
Development environment
setup

Carlos Maiolino

Izabela Bakollari

Rado Vrbosky

Vratislav Bende

Leonardo Vaz

1

2

Overview ▸ Development and testing machines

▸ Development tools

▸ Kernel configuration

▸ Installing the Linux kernel

▸ Patch formatting and submission

3

Development and
testing machines

4

▸ If you screw up your code, you don’t lose your dev environment

▸ You can use bare-metal for development if you have a Linux machine

▸ We recommend Fedora, but you can use any distro as long as you

know how to use it.

▸ Why Fedora?

･ Bleeding edge tools available (we don’t need to compile

anything other than Linux itself).

･ We know how the package manager works

Why two different machines?

5

▸ Can be your bare-metal machine if you use Linux

▸ If you don’t use Linux, you will need to install a virtual machine

▸ Setup the development environment (more on this later)

▸ NFS server: Easy way to build the kernel in one place and install in

another

Development machine

6

▸ A Linux machine where we will install and test the Linux kernel

▸ Don’t need to be powerful

▸ At least 2 vCPUs would be great so we can use SMP

▸ As much memory as you have available

▸ NFS client (to install the kernel)

Test machine

7

Development Tools

8

▸ git (mandatory)

▸ Linux source tree (of course)

▸ Compiler (gcc, clang)

▸ code editor (vim, emacs, whatever else you want to use)

▸ Navigation tools

▸ Debug tools (To be discussed later)

Some useful tools

9

▸ Make sure to use the correct tree

･ You may need to submit your patch to a different tree than

Linus’s main tree

▸ Mainline, stable, subsystem trees

▸ We will use Linus’s main tree for the purposes of the course

Obtaining the source code

git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git

10

Linux Kernel Flavours

Receive and merge patches

related to a specific

subsystem or subcomponent

Maintainer Subtree

Linus' main tree, the end point

of all Linux’s patches.

Vanilla

Aggregate bleeding edge

patches, to be tested before

being merged to the main

tree

Linux-Next tree

11

Quick look into
kernel configuration

12

▸ How the kernel .config file works

▸ How to create the config file the easy way

･ Copy from a distribution and change it

･ Use kernel config generator

･ Graphical tools (xconfig, gconfig, nconfig, menuconfig)

▸ The hard way: $make config

▸ The spartan way: write the .config yourself!

Configure your kernel

13

Building and
installing the kernel

14

▸ In order to build the kernel, the .config should be ready

･ You can tweak the version if you want (see localversion file)

▸ Distribution package vs standard build vs Tarball

･ Run $ make help and look for the options

▸ Run $ make -jX >/dev/null to start building the kernel

･ Where X depends on how many CPUs you have available

▸ Wait a long time

▸ Hope for no errors (otherwise you'll need to start it over).

Building

15

▸ Transferring the built kernel image to the test machine

･ Copying the package

･ Packaging the executables and copying them

･ Accessing the dev environment via NFS

▸ The development environment should be the same architecture

･ Unless you are cross-compiling a kernel for a different architecture

▸ Make sure your kernel is finally bootable

Installing

16

Browsing the
Kernel Tree

17

https://makelinux.github.io/kernel/map/

Documentation/
scripts/
tools/
MAINTAINERS
README

Kernel Directory Structure

arch/
crypto/
include/
kernel/
lib/

block/
drivers/
fs/
mm/
net/
virt/

https://makelinux.github.io/kernel/map/

18

Environment
examples

19

▸ Git

･ git-worktree

･ guilt

▸ tmux

▸ vim + nerdtree + tagbar

▸ cscope

▸ neomutt

Carlos

20

▸ Git

･ git-worktree

･ guilt

▸ tmux

▸ vim + nerdtree + tagbar

▸ cscope

▸ neomutt

Izabella

21

▸ git

▸ screen

▸ vim + nerdtree + tagbar

▸ make tags, grep

▸ mutt, gitlab

▸ qemu

Rado

22

▸ git

▸ vim (quite raw TBH)

▸ cscope, gtags, grep

▸ perf, trace-cmd, systemtap

▸ bash & python scripts

Vraťo

23

Linux coding style
and patch submission
process

24

▸ Linux maintainers are strict regarding coding style

▸ Make sure your code follows it

▸ There are tools for checking the code style

･ Coding style check script (scripts/checkpatch.pl)

･ vim plugin (if you use vim)

▸ Coding Style in the following URL:

https://docs.kernel.org/process/coding-style.html

Linux Kernel coding style

https://docs.kernel.org/process/coding-style.html

Prepare your patch for submission

25

▸ Avoid heated discussions in the mailings

▸ Make sure that

･ Your patch applies against the tree you are submitting it

･ It builds

･ The kernel boots and it doesn't crash the system immediately

▸ Beginner friendly tool: $ git format-patch

https://git-scm.com/docs/git-format-patch

https://git-scm.com/docs/git-format-patch

26

▸ Look for a mailing list related to what you are changing

･ Most of the time, patches are not submitted against the main tree

▸ Make sure your patch is tested on the right tree before submitting

▸ Use scripts/get_maintainer.pl to find the subsystem maintainer

Where should we send the patch?

https://www.kernel.org/doc/html/latest/process/submitting-patches.html

https://www.kernel.org/doc/html/latest/process/submitting-patches.html

Send it!

27

▸ Linux upstream community is email based

▸ You can use git send-email

▸ Configure your ~/.gitconfig to submit patches

▸ See the documentation for examples

https://git-scm.com/docs/git-send-email

https://git-scm.com/docs/git-send-email

28

Recap

$ git commit $ git format-patch $ scripts/check_patch.pl $ git send-email

Step 1:
Commit your

changes

Step 2:
Extract the patch

to a file

Step 3:
Check the

Coding Style

Step 4:
Submit the

Patch

linkedin.com/company/red-hat

youtube.com/user/RedHatVideos

facebook.com/redhatinc

twitter.com/RedHat

29

Red Hat is the world’s leading provider of enterprise

open source software solutions. Award-winning

support, training, and consulting services make

Red Hat a trusted adviser to the Fortune 500.

Thank you

