Update confidential designator here

PC and the x86

Lesson 3

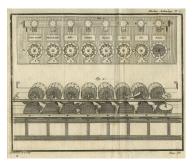
Fall 2024 FI MU

Rado Vrbovsky

<rvrbovsk@redhat.com>

- History of the computer
- IBM Personal Computer, model 5150
- PC architecture
- x86 CPU in a closer look

History of the computer


History of the computer - Calculators - Ancient times

Roman Abacus

Zhusuan

Pascaline

Cash register

Curta

Mechanical calculators - source Wikipedia

Mainframe computer

- "The big iron"
- Large footprint (whole floor)
- Build for redundancy
- Large IO throughput (bulk data processing)
- Multiple OSes running at the same time in VMs
- Many modular peripherals
- Backward compatibility
- Used by US government, NASA, universities
- Still used today

IBM System/360

Minicomputers

- 16/32 bit architecture
- Low cost version of a mainframe (but still size of a small truck or fridge)
- Eventually faded out
- Unix was written on DEC PDP-11

DEC PDP-11

Microcomputers

- Small form factor
- Microchip CPU, 8 bit or 16 bit
- For home or office use
- Self assembled
- Single user
- Apple, Commodore, Tandy
- ČSSR Didaktik, PMD

Commodore - 64

- Minicomputer market large enough to be noticed by IBM
- Super secret project inside IBM by a small team
- Use of "off the shelf" components
- Open hardware platform (ISA bus, option ROMs)
- Good open documentation including BIOS source code listing

IBM Personal Computer 5150

IBM Personal Computer - picture source Wikipedia

- Minicomputer market large enough to be noticed by IBM
- Super secret project inside IBM by a small team
- Use of "off the shelf" components
- Open hardware platform (ISA bus, option ROMs)
- Good open documentation including BIOS source code listing
- Easy to copy design -> Many cheap clones and 3rd party extension hardware -> Wide spread of platform

IBM hardware (set of chips)

- 8086 CPU
- 8237 DMA
- 8259 Interrupt controller
- 8253 Timer
- 6843 CRT controller
- 8042 Keyboard controller
- 8255 Cassette controller (PPI Programmable Peripheral Interface chip)

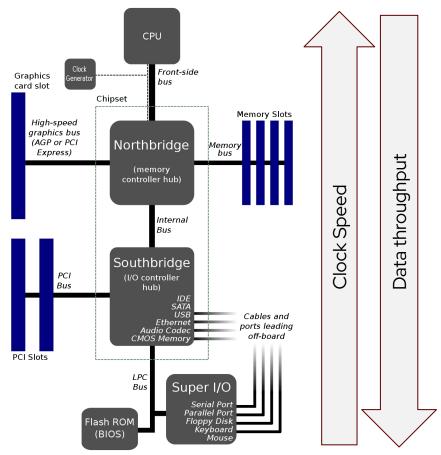
IBM hardware (set of chips)

- 8086 CPU
- 8237 DMA
- 8259 Interrupt controller
- 8253 Timer
- 6843 CRT controller
- 8042 Keyboard controller
- 8255 Cassette controller (PPI Programmable Peripheral Interface chip)

Most of the hardware still present in some form.

IBM Personal Computer

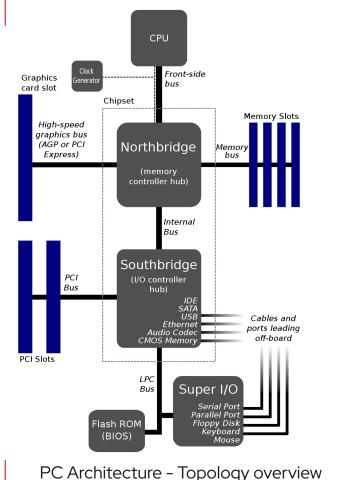
- Fixed boot order
 - When no bootable device was found, option ROM with BASIC was booted
- No interactive BIOS setup tool
- No resource management
 - Manual assignment of resource by hand
 - Conflicts hard to detect
- No power management
 - Hard to make a portable device



Jumper for HW configuration

PC Architecture

PC Architecture - Historical Insight


Historical Insight

- Set of individual chips (8237, 8042, ...) integrated into one large component -> Chipset
- Later split again
 - \circ Speed
 - Divide legacy hardware and the new PCI hardware
- Nowadays Memory Controller or the whole Northbridge controller integrated to CPU

PC Architecture - Topology overview

Topology overview

 List of nodes (devices) and links (buses) organized into a tree like structure

• Device

- A hardware component
 - Storage device
 - Human interface device
 - CPU
 - Bus bridge
 - …
- Bus
 - A communication system to transfer data between components inside a computer or between computers
 - Bus attributes:
 - Clock speed (Hz, MHz)
 - Style (Parallel/Serial)
 - Data width (8 bit, 16 bit, 32 bit, 64 bit, ...)
 - Duplex (Half duplex, Full duplex)

ISA - Industry Standard Architecture, (PC Bus or IO Channel)

- Original IBM PC Bus
- Used for expansion cards
- Peripheral devices
- Parallel, 8/16 bit, 4, 8 to 20Mhz
- DMA support
- 16 IRQ (cannot be shared and at least 6 were already used by internal devices)
- 12V, 5V
- All devices are equal

PCI - Peripheral Component Interconnect

- Intel 1992
- Replaces ISA
- Parallel, 32/64 bit, up to 66 MHz
- Tree like structure (up to 255 buses, each bus 32 devices, each device 8 functions (logical device))
- Shared IRQs among PCI devices, IRQs stolen from ISA
- 5V, 3V
- Software accessible configuration space with a vendor and a device ID and a class code

AGP - Accelerated Graphics Port

- Intel 1997
- Parallel, 32 bit
- Specialized PCI bus for graphic card accelerators

PCIx - Peripheral Component Interconnect eXtended

- IBM, HP, and Compaq 1998
- Replaces PCI
- Parallel 32/64 bit, up to 533 MHz
- Hardware and software compatible with PCI
- Higher clock rates

PCIe - Peripheral Component Interconnect Express

- Intel, Dell, HP, IBM 2003
- Replaces PCI, AGP and PCIx
- High speed serial bus
- Not physically backward compatible
- Somewhat backward software compatible

LPC - Low Pin Count

- Intel 1994 as a substitute for ISA, 4 bit wide parallel
- Super IOs, BIOS ROM, Southbridge

eSPI - Enhanced Serial Peripheral Interface

- Substitute for LPC
- 1, 2, 4 bits wide

I2C - Inter-Integrated Circuit

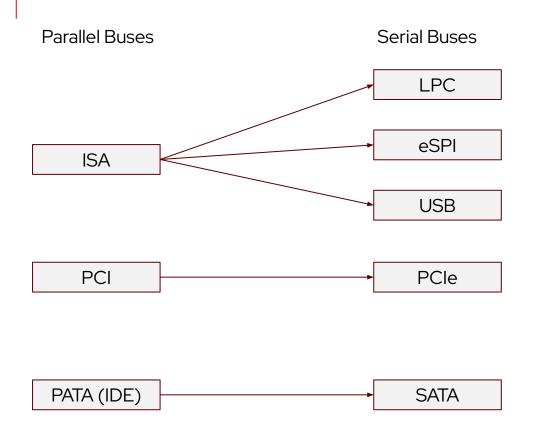
- NXP in 1982
- 2 wire bus (SCL clock, SDA data)
- Sensors, EEPROMs, Fan control, EDID data in monitors and displays

SMBus - System Management Bus

- Intel and Duracell 1994
- Derived from I2C
- Used for motherboard devices, e.g. SPD (main memory configuration), laptop charging system (smart battery, embedded controller), sensors, fan, voltage regulator, clock generator

USB - Universal Serial Bus

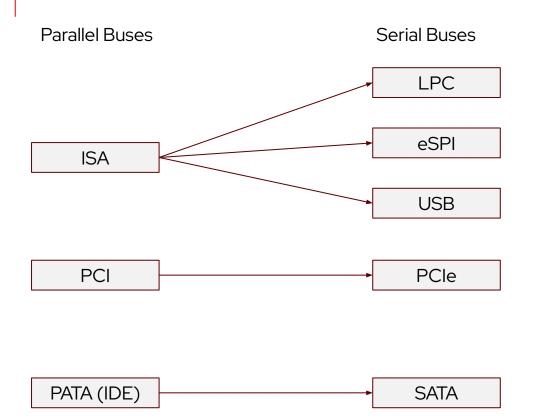
- Compaq, DEC, IBM, Intel, Microsoft, NEC, and Nortel 1996
- Standardize the connection of peripherals to computers
- Replacing UARTs, LPTs, game ports
- Nowadays support everything


ATA - AT Bus Attachment (Parallel ATA, IDE - Integrated Drive Electronics)

- Western digital and Compaq in 1986
- Direct connection to the 16 bit ISA bus for permanent storage (disks)
- Parallel

SATA - Serial AT Attachment

- 2000
- Substitute for PATA
- Higher data rates
- Native hot plug support



Over time width of bus is reduced from parallelism to serial.

WHY?

PC Architecture - Main PC Buses - Serialization of buses

Red Hat

- Reduces risk of clock skew
- Higher clock rates
- Easier PCB design and layout
- Saves space on PCB
- Lower production costs

Firmware

- Hardware specific low level software
 - CPU uCode, motherboard firmware, CDROMs, BT devices, hard drives, networking cards, graphic cards
- BIOS Basic I/O System
 - PC specific firmware
 - Resides in E, F segments
 - POST Power On Self Test
 - Boot up the computer
 - Enumerate resources for present devices
 - Scans for option ROMs
 - Detects bootable devices
 - Boots up the operating system
 - Abstraction layer between hardware and the OS
 - Provides runtime services for the OS

Legacy BIOS

- First IBM BIOS was very simple (fixed list of bootable devices, no HW or power management ...)
- Written in assembly language

UEFI - Unified Extensible Firmware Interface

- New standard since used 2010s
- Written mostly in C language
- Uses CAR (CPU Cache As Ram) for stack and heap before main memory is initialized
- Fully substitutes traditional BIOS, but can provide backward compatibility with Legacy BIOS if needed
- Modular
- Multiplatform (x86, ARM)
- Security by design
- Open Source implementations available

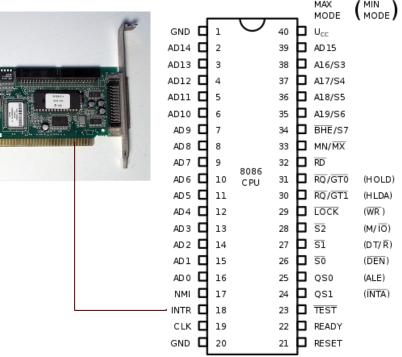
Many extensions since the first IBM BIOS

- BBS BIOS Boot Specification
 - BIOS scans a list of bootable devices and lets user decide what to boot.
- DMI Desktop Management Interface
 - Information about the hardware from specific vendors
 - Information about the present hardware and its resources
- PNP Plug And Play
 - Microsoft in the 90s
 - PC was not aware of its own resources
 - Per device configuration with resource profiles
 - BIOS would find a suitable combination of profiles for all the devices
 - BIOS would resolve resource conflicts

- APM Advanced Power Management
 - Written by Microsoft and Intel in 1992
 - APM BIOS is in charge of devices and platform as whole
 - OS participates through APM driver and APM aware applications
 - System and device states can be controlled either by BIOS or APM aware OS through BIOS
- ACPI Advanced Configuration and Power Interface
 - Released by Microsoft, Intel and Toshiba in 1996
 - All information about the hardware is provided through a single service
 - OS is put in charge of the whole platform management
 - Set of memory mapped tables containing information about the hardware
 - AML ACPI Machine Language
 - Bytecode containing all hardware specific routines for hardware
 - Code in interpreted by the OS

Interrupts (Traps)

- Started as an alternative to to polling
- Latency Delay between invoking (triggering, raising) and interrupt and running the software callback (handler)
- Can be masked (ignored) while running critical code
- Transparent to user space


Hardware Interrupt (IRQs)

- Physical connection between a CPU and a device (SCSI, Net, Sound Card, ...)
- Serves as a notification from the device to the CPU

Software Interrupt

- A callback function to handle a specific IRQ (interrupt handler)
- Can be also triggered by software by a special instruction
- 8086 had 256 interrupts, each interrupt mapped to a different callback

Interrupts, Exceptions, Traps - pictures source Wikipedia

The 8086 pin assignments in min and max mode

 Non Maskable Interrupts Like regular interrupts, but cannot be masked (ignored) Can occur while handling a different interrupt! Once NMI is handled, another cannot be serviced until IRET (Return from Interrupt) instruction is executed Used for critical events Critical failure is eminent Data loss or data corruption Watchdog is triggered 	GND 1 AD14 2 AD13 4 AD13 4 AD12 4 AD11 5 AD10 6 AD9 7 AD8 8 AD7 9 AD6 10 CPU AD5 11 AD4 12 AD3 13 AD2 14 AD1 15 AD0 16 NMI 117	MODE 40 U _{CC} 39 AD 15 38 AL6/S3 37 AL7/S4 36 AL8/S5 35 AL9/S6 34 BHE/S7 33 MN/MX 32 RD 5 31 RQ/GT0 (0 30 RQ/GT1 (0 29 CCCK (0 28 S2 (0 27 SI (0 26 S0 (0 25 QS0 (0	HOLD) HOLD) HLDA) WR) DT/R) DEN) ALE) INTA)
 Internal CPU events 	→ NMI □ 17 INTR □ 18	24 🗖 QS1 () 23 🗖 TEST	INTA)
 Processor-detected program-error exceptions (Faults, Traps, 	CLK [] 19	22 D READY	
Aborts)	GND 🗖 20	21 RESET	

Software-generated exceptions (INT 0, INT 1, INT3)

• Machine-check exceptions

The 8086 pin assignments in min and max mode

Interrupts, Exceptions, Traps - pictures source Wikipedia

DMA - Direct Memory Access

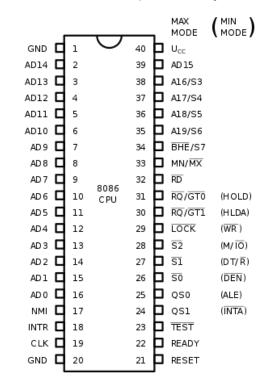
- Copy data over address space without involving CPU (its too slow for that anyway)
- DMA controller device that copies the data over memory address bus
- Used mainly by devices (network cards, sound cards, storage devices, video cards, ...)
- DMA16 16bit legacy address space used by ISA cards
- DMA32 32bit address space for PCI devices

			<u> </u>			MAX MODE	(MIN MODE)
GND	þ	1	\bigcirc	40	Þ	Ucc	
AD14	þ	2		39	Þ	AD 15	
AD13	q	3		38	Þ	A16/S3	
AD12	q	4		37	Þ	A17/S4	
AD11	þ	5		36	Þ	A18/S5	
AD10	q	6		35	Þ	A19/S6	
AD 9	q	7		34	Þ	BHE/S7	
AD 8	q	8		33	Þ	MN/\overline{MX}	
AD 7	q	9	8086	32	Þ	RD	
AD 6	q	10	CPU	31	Þ	RQ/GT0	(HOLD)
AD 5	þ	11		30	Þ	RQ/GT1	(HLDA)
AD 4	q	12		29	Þ	LOCK	(WR)
AD 3	q	13		28	Þ	S2	(M/ 10)
AD 2	q	14		27	Þ	<u>51</u>	(D T/ R)
AD 1	q	15		26	Þ	S0	(DEN)
AD 0	q	16		25	Þ	QS0	(ALE)
NMI	q	17		24	Þ	QS1	(INTA)
INTR	q	18		23	Þ	TEST	
CLK	q	19		22	Þ	READY	
GND	q	20		21	þ	RESET	

The 8086 pin assignments in min and max mode

x86 CPU in a closer look

Update confidential designator here


MODE	(MODE)
Architecture and features ${}_{\text{GND}} \mathbf{q}_{1} \bigvee_{40} \mathbf{p}_{\text{U}_{cc}}$	
CISC - Complex Instruction Set Computer	
Instruction Pipelining	
Superscalar	
Speculative Execution AD 8 AD 8	
• Branch Prediction AD 6 🖬 10 8086 31 🗖 RQ/GT) (HOLD)
 Out of Order Execution AD5 9 11 30 8 RQ/GT 	
AD4 🗖 12 29 🗖 LOCK	(WR)
Privilege modes	(M/ 10)
• CPU modes 4D2 27 2 31	(D T/ R)
$AD1 = 15 \qquad 26 = \overline{50}$	(DEN)
Memory modes	(ALE)
	(INTA)
Interrupts and Exceptions	
Registers GND Q 20 21 RESET	

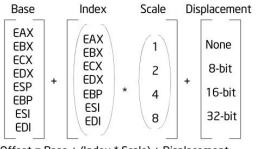
The 8086 pin assignments in min and max mode

x86 CPU

CISC - Complex Instruction Set Computer

- Single instructions can execute several low-level operations • (such as a load from memory, an arithmetic operation, and a memory store)
- add rax,QWORD PTR [rbx+rbp*8+0xa] Intel:
- AT&T: add 0xa(%rbx,%rbp,8),%rax

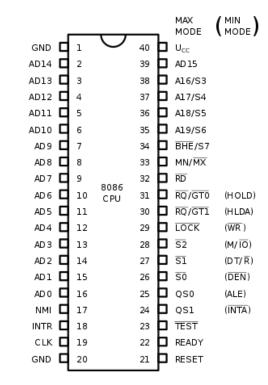
The 8086 pin assignments in min and max mode



CISC - Complex Instruction Set Computer

 Single instructions can execute several low-level operations (such as a load from memory, an arithmetic operation, and a memory store)

Intel:	add	rax,QWORD	PTR	[rbx+rbp*8+0xa]
--------	-----	-----------	-----	-----------------


AT&T: add 0xa(%rbx, %rbp, 8), %rax

Offset = Base + (Index * Scale) + Displacement

Multiply register and constant
 Add result with a constant

- 3. Add result with a register
- 4. Fetch QWORD from memory
- 5. Add register and a constant
- 6. Store result in a register

The 8086 pin assignments in min and max mode

Update	confidential	designator here
--------	--------------	-----------------

			MAX MODE	(MIN MODE)
CISC - Complex Instruction Set Computer	GND 🗗 1 💛	′₄₀Þ	Ucc	
 Variable length of instructions 	AD14 🗖 2	39 þ	AD 15	
Variable length of instructions	AD13 🗖 3	38 Þ	A16/S3	
 Instructions take several CPU cycles to execute, depending on 	AD12 🗖 4	37 Þ	A17/S4	
the instructions and its operands	AD11 🗖 5	36 Þ	A18/S5	
the instructions and its operatios	AD10 🗖 6	35 Þ	A19/S6	
	AD 9 🗖 7	34 Þ	BHE/S7	
Intel: 48 c7 45 f8 78 56 34 12 mov _QWORD PTR [rbp-0x8], 0x12345678	AD 8 🗖 8	33 Þ	MN/MX	
	AD 7 🗖 9	32 🗗	RD	
c3 ret	AD 6 🗖 10 8086	31 Þ	RQ/GT0	(HOLD)
	AD5 🗖 11	30 Þ	RQ/GT1	(HLDA)
	AD4 🗖 12	29 뉟	LOCK	(WR)
AT&T: 48 c7 45 f8 78 56 34 12 movg \$0x12345678,-0x8(%rbp)	AD 3 🗖 13	28 Þ	S2	(M/10)
	AD 2 🗖 14	27 Þ	SI	(D T/ R)
c3 ret	AD1 🗖 15	26 Þ	S0	(DEN)
	AD 0 🗖 16	25 🗖	QS0	(ALE)

- Great for assembler developers (and virus writers)
- Nightmare for CPU designers (x86 is backward compatible to 1978) .
- Modern x86 CPUs are internally RISC (Reduced Instruction Set • Computers), CISC instructions are translated to RISC instructions internally

The 8086 pin assignments in min and max mode

24 051

23 D TEST

22 п READY

21

RESET

(INTA)

D 17

D 18

D 19

D 20

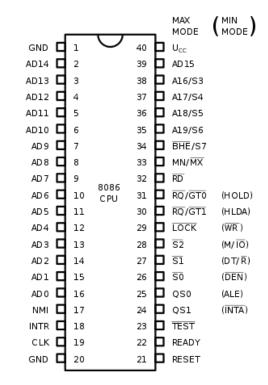
NMI

INTR

CLK

GND

x86 CPU - Architecture and Features


Little Endian

• Order in which bytes are stored in computer memory

unsigned long value = 0x12345678;

Offset	Little Endian	Big Endian
0x1000	0x78	0x12
0x1001	0x56	0x34
0x1002	0x34	Øx56
0x1003	0x12	0x78

- BE From historical architectures like IBM, still used by networking protocols
- LE Simplifies silicon design and arithmetic operations on integers

The 8086 pin assignments in min and max mode

x86 CPU - Architecture and Features

ID

EX

MEM

WB

Instruction Pipelining

Z 1.4181

															MAX MODE	(MIN MODE)
uction	Pipelin	ning								GND 🕻	1	\bigcirc	40	þ	Ucc	. ,
Idea o	riainat	ed in R	RISC CF		ians					AD14 🕻	2		39	2	AD 15	
	0				0					AD13	3		38	Ρ	A16/S3	
Split e	xecutio	on of ir	nstruct	ions int	to stag	es				AD12	4		37	P	A17/S4	
	instru	ction c	an be p	roces	sed wh	nile nre	vious ir	nstruct	tion is	AD11 🕻	5		36	P	A18/S5	
			•			•		Suuci		AD10 🕻	6		35	ρ.	A19/S6	
being	proces	ssed in	a later	stage	of the	pipelin	e			AD 9	7		34	ρ	BHE/S7	
Simpli	fies CF		ian	•						AD 8 🕻	8		33	Þ	MN/MX	
•			5							AD 7 🕻	9	0000	32	Þ	RD	
Makes	s sure e	each pa	art of th	he CPl	J is bus	sy				AD 6	10	8086 CPU	31	Þ	RQ/GT0	(HOLD)
										AD 5	11		30	ρ	RQ/GT1	(HLDA)
IF	ID	ΕX	MEM	WB						AD4 🕻	12		29	Þ	LOCK	(WR)
										AD 3	13		28	Ρ	S2	(M/ 10)
ļi	IF	ID	EX	MEM	WB					AD 2	14		27	Þ	SI	(D T/ R)
t		IF	ID	ΕX	MEM	WB				AD1	15		26	Ρ	S0	(DEN)
- →	ļ									AD 0	16		25	P	QS0	(ALE)
			IF	ID	ΕX	MEM	WB			NMI 🕻	17		24	P	QS1	(INTA)
				10		ΓV	NALINA]	INTR 🕻	18		23	Þ	TEST	

Basic five-stage pipeline in a RISC machine (IF = Instruction Fetch, ID = Instruction Decode, EX = Execute, MEM = Memory access, WB = Register write back)

The 8086 pin assignments in min and max mode

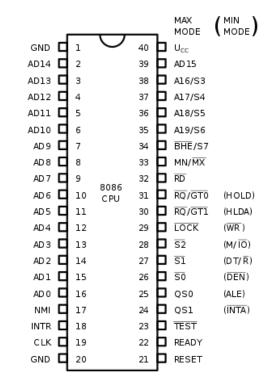
22 п READY

21 RESET

CLK

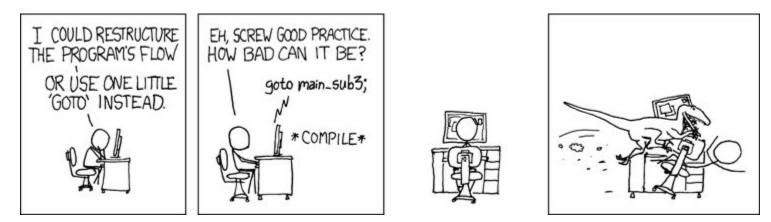
GND

D 19


20

Speculative Execution - Branch Prediction

- On conditional branching, the CPU starts to execute both branches without knowing the result (using separate pipelines).
 Upon knowing the result, the pipeline with wrong chosen path is flushed
- Reduces risk of choosing the wrong code branch of execution and refilling the whole pipeline


```
int do_stuff(int a, int b)
{
    if (a > b)
        goto _exit;
    printf("Hello world!\n");
    return 1;
_exit:
    return 0;
}
```


The 8086 pin assignments in min and max mode

x86 CPU - Architecture and Features

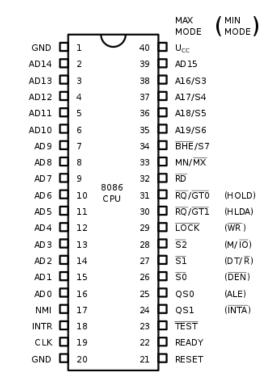
xkcd.com

- Yes, there was a goto in the last example.
- The kernel code is full of them.
- A goto generates a relative jump and branch predictor makes sure that at least one pipeline is not completely flushed.
- Absolute jumps flush instruction pipeline completely.

Speculative Execution - Out of order execution

- The CPU executes instructions in a order depending on the availability of pipelines, disregarding order of instructions in the program
- Reduces idleness of pipelines

Intel:	mo∨ add	rax,QWORD PTR [rbx rcx,rdx
AT&T:	mo∨ add	(%rbx),%rax %rdx,%rcx

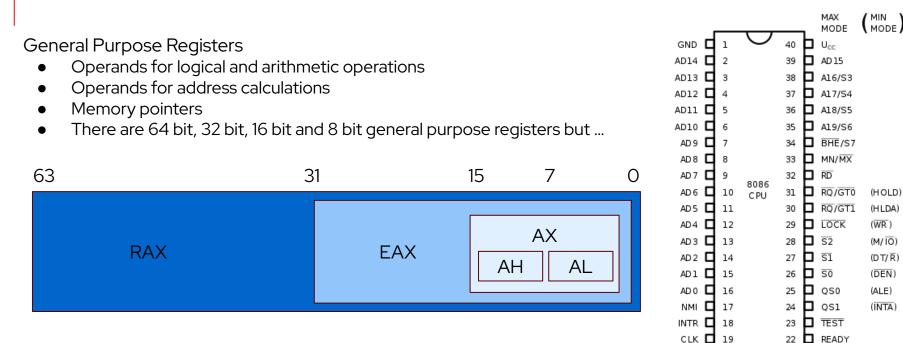


Speculative Execution - Out of order execution

- The CPU executes instructions in a order depending on the availability of pipelines, disregarding order of instructions in the program
- Reduces idleness of pipelines

Intel:	mo∨ add	rax,QWORD PTR [rbx] rcx,rdx
AT&T:	mo∨ add	(%rbx),%rax %rdx,%rcx

The addition will be executed first. It is not dependent on result of previous operation. Fetch from memory is guaranteed to take longer than addition on registers.



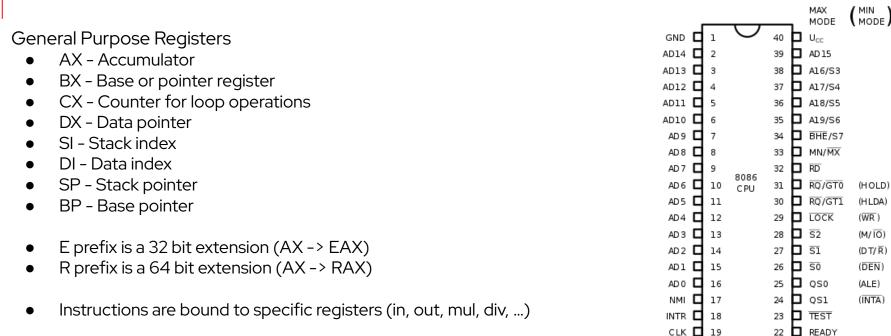
Register AD14 1 40 Ucc • Device specific storage AD13 3 38 AL6/S3 AD12 4 37 AL7/S4 AD10 6 5 6 AL9/S5 AD10 6 5 AL9/S5 AD10 6 5 AL9/S5 AD10 6 5 AL9/S5 AD10 6 5 AL9/S5 Segment Registers AD1 6 5 Flag Register AD6 1 80 Instruction Pointer Registers AD2 7 34 Octortrol Registers AD2 10 R0/GT (HoLD) Memory Registers AD3 13 28 52 (MT0) PU Registers AD2 14 27 51 (DTR) Registers For Multimedia Extensions AD1 15 26 50 (MTR) Debug Registers CLK 19 22 READY (MTR)						MAX MODE	(MIN MODE)
 Device specific storage Als/53 Als/53 Als/53 Als/53 Als/53 Als/53 Als/53 Als/53 Als/54 AD11 5 36 Als/55 Als/56 Als/55 Als/56 Als/55 Als/55 Als/55<		GND 🛛	1	\bigcirc	40		
AD22437A17/54AD10536A18/55AD10635A19/56General Purpose RegistersAD9734BHE/57Segment RegistersAD79833MN/MXFlag RegisterAD610832R0Instruction Pointer RegistersAD6108001130R0/GT0Instruction Pointer RegistersAD61130R0/GT0(HoLD)Ocntrol RegistersAD61130S2S2(WR)Memory RegistersAD61328S2(WR)FPU RegistersAD7152650(DT/R)Put RegistersAD7111526S0(DT/R)Debug RegistersAD7111229R0/GT0(INTA)Debug RegistersNMI1724QS1(INTA)NMI1724QS1TESTTESTCIK1922READYTESTTEST	Register	AD14 🕻	2		39	🗖 AD 15	
X86 CPUAD11536A18/55• General Purpose RegistersAD97349• Segment RegistersAD8833MN/MX• Flag RegisterAD6109327• Instruction Pointer RegistersAD51130RQ/GT1(HLDA)• Control RegistersAD41229COCK(WR)• Memory RegistersAD21427551(DT/R)• FPU RegistersAD2142751(DT/R)• Registers For Multimedia ExtensionsNMI1724QS1(INTA)• Debug RegistersNMI1724QS1(INTA)• Debug RegistersNMICIK1922READY	 Device specific storage 	AD13 🕻	з		38	A16/S3	
X86 CPUAD10635AL9/56• General Purpose RegistersAD9734BHE/57• Segment RegistersAD7932R0• Flag RegisterAD610808531R0/GT0• Instruction Pointer RegistersAD51130R0/GT1(HLDA)• Control RegistersAD41229LOCK(WR)• Memory RegistersAD3132852(M/I0)• FPU RegistersAD1152650(DEN)• Registers For Multimedia ExtensionsNM11724QS1(INTA)• Debug RegistersNM11724QS1(INTA)• Debug RegistersNM11823TEST• Memory RegistersNM11823TEST• Registers For Multimedia ExtensionsNM11724QS1• NM11823TESTFEADY		AD12 🕻	4		37	A17/S4	
 General Purpose Registers Segment Registers Flag Register Instruction Pointer Registers Control Registers Memory Registers Memory Registers FPU Registers Registers For Multimedia Extensions Registers For Multimedia Extensions NMI C T <lit< li=""> T</lit<>					36	E i	
 Segment Registers Flag Register Instruction Pointer Registers Control Registers Memory Registers Memory Registers FPU Registers Registers For Multimedia Extensions Registers Registers						E .	
 Segment Registers Flag Register Instruction Pointer Register Control Registers Memory Registers FPU Registers Registers For Multimedia Extensions Debug Registers NMI C 13 24 30 31 30 32 31 30 31 30 32 31 30 32 31 32 32 32 31 32 33 32 33 34 35 36 37 37 37 37 37 38 38 39 	 General Purpose Registers 	_				E i	
 Flag Register Instruction Pointer Register Control Registers Memory Registers FPU Registers Registers For Multimedia Extensions Debug Registers Memory Registers Registers <li< td=""><td>Seament Registers</td><td></td><td></td><td></td><td></td><td></td><td></td></li<>	Seament Registers						
 Flag Register Instruction Pointer Register Control Registers Memory Registers FPU Registers Registers For Multimedia Extensions Debug Registers Instruction Pointer Registers Registers Regis	5 5			8086			
 Instruction Pointer Register Control Registers Memory Registers FPU Registers Registers For Multimedia Extensions Debug Registers CLK 19 20 212 29 LOCK (WR) WR) 13 28 52 (M/10) M(10) 14 27 51 (DT/R) (DEN) 16 25 QS0 (ALE) (INTA) Debug Registers CLK 19 22 READY 	Flag Register						
 Control Registers Memory Registers FPU Registers Registers For Multimedia Extensions Debug Registers Intra I <l< td=""><td> Instruction Pointer Register </td><td></td><td></td><td></td><td></td><td></td><td></td></l<>	 Instruction Pointer Register 						
 Memory Registers FPU Registers Registers For Multimedia Extensions Debug Registers MI C 17 CLK C 19 	Control Registers						
 FPU Registers Registers For Multimedia Extensions Debug Registers MI I 15 26 50 (DEN) AD0 I 16 25 0 QS0 (ALE) INTR I 17 24 0 QS1 (INTA) INTR I 18 23 TEST CLK I 19 22 READY 	5						
 PPO Registers Registers For Multimedia Extensions Debug Registers MI C 16 25 QS0 (ALE) NMI C 17 24 QS1 (INTA) Debug Registers CLK C 19 22 READY 	Memory Registers						
 Registers For Multimedia Extensions Debug Registers Untraliant Debug Registers Untraliant Debug Registers Debug Registers	 FPU Reaisters 	_			26		(DEN)
Debug Registers INTR 18 23 TEST CLK 19 22 READY					25		
	5	_					(INTA)
•	 Debug Registers 				23	E	
GND 20 21 RESET	•				22	E	
		GND 🕻	20		21	RESET	

- The same goes for RBX, RCX, RDX, RSI, RDI, RSP, RBP, R8 R15, except:
 - R8 R15 don't have a 32 bit and 16 bit version
 - RSI, RDI, RSP, RBP, R8-R15 have only low 8 bit register (no high)

The 8086 pin assignments in min and max mode

21

RESET


20

GND

x86 CPU - Architecture and Features - General Registers

x86 CPU - Architecture and Features - General Registers

MIN

(HOLD)

(HLDA)

(WR)

(M/10)

(DT/R)

(DEN)

(ALE)

(INTA)

The 8086 pin assignments in min and max mode

GND 20 RESET

21

.

Segment Registers

- 16 bit registers (upper parts are directly not accessible)
- Used to address different locations in address space as direct memory pointers or used with segmentation

Intel:	mo∨ mo∨	rax, es:[rbx] gs:[rbp],rax
AT&T:	esmov mov	(%rdx),%rax %rax,%gs:0x0(%rbp)

- Not Really used in 64bit mode, but needed to properly set up protected mode
- CS Code Segment Code is always fetched from here
- DS Data Segment
- SS Stack Segment
- ES Extra segment
- FS, GS Additional Extra segments

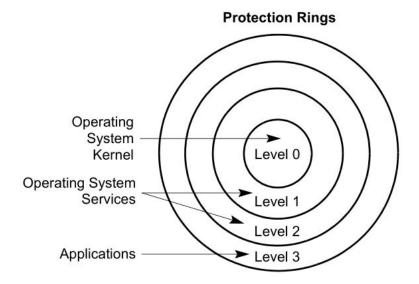
x86 CPU - Architecture and Features - Segment Registers

	_				MAX MODE	(MIN MODE)
GND 🕻	11	\bigcirc	40	Þ	Ucc	
AD14 🕻	2		39	Þ	AD 15	
AD13 🕻	3		38	Þ	A16/S3	
AD12 🕻	4		37	Þ	A17/S4	
AD11 🕻	5		36	Þ	A18/S5	
AD10 🕻	6		35	Þ	A19/S6	
AD 9	17		34	Þ	BHE/S7	
AD 8	18		33	Þ	MN/\overline{MX}	
AD 7 🕻	9	0000	32	Þ	RD	
AD 6 🕻	10	8086 CPU	31	Þ	RQ/GT0	(HOLD)
AD 5 🕻	1 11		30	Þ	RQ/GT1	(HLDA)
AD4	12		29	Þ	LOCK	(WR)
AD 3 🕻	13		28	Þ	S2	(M/10)
AD 2	14		27	Þ	SI	(D T/ R)
AD1 🕻	15		26	Þ	S0	(DEN)
AD 0	16		25	Þ	QS0	(ALE)
NMI 🕻	1 17		24	Þ	QS1	(INTA)
INTR 🕻	1 18		23	Þ	TEST	
CLK 🕻	19		22	Þ	READY	
GND 🕻	20		21	Þ	RESET	

EFlags

•

U 3


	_			MAX MODE	(MIN MODE)
s - Flag register	GND 🗖	$_{1}$ \bigcirc	40 þ	Ucc	
Jnion of 1 bit registers in one 64 bit register	AD14 🗖	2	39 🗖	AD 15	
3 main groups	AD13 🗖	3	38 Þ	A16/S3	
5 1	AD12 🗖	4	37 Þ	A17/S4	
• Status	AD11 🗖	5	36 🏳	A18/S5	
 Results of arithmetic operations 	AD10 🗖	6	35 🏳	A19/S6	
 Evaluated by conditional jumps 	AD 9 🗖	7	34 þ	BHE/S7	
 Parity, Overflow, Zero, Carry, Sign bits 	AD 8 🗖	8	33 P	MN/MX	
	AD 7 🗖	9 8086	32	RD	
• Control	AD 6 🗖	10 CPU	31 🏳	RQ/GT0	(HOLD)
 Direction of auto incrementation of string instructions 	AD 5 🗖	11	30 🏳	RQ/GT1	(HLDA)
 MOVS, CMPS, SCAS, LODS, and STOS 	AD4 🗖	12	29	LOCK	(WR)
	AD 3 🗖	13	28	S2	(M/10)
5	AD 2 🗖	14	27	<u>51</u>	(D T/ R)
 IRQ handling flags 	AD1 🗖	15	26	S0	(DEN)
 Traps, Interrupts, virtual 8086 interrupt, 	AD 0 🗖	16	25	QS0	(ALE)
	имі 🗖	17	24 P	QS1	(INTA)
	INTR 🗖	18	23	TEST	
	сік 🗖	19	22 🏳	READY	

The 8086 pin assignments in min and max mode

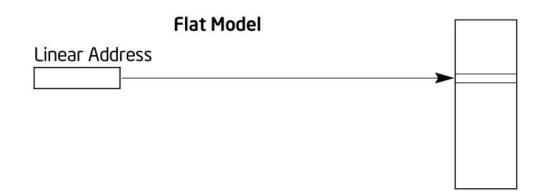
GND 20 21 RESET

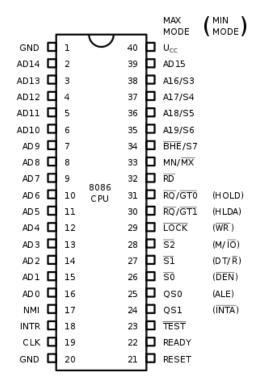
	_				MAX MODE	(MIN MODE)
IP - Instruction Pointer	GND 🗖	1	\bigcirc	40		
 Points to next instruction to be executed 	AD14 🗖	2		39	AD 15	
	AD13 🗖	3		38	A16/S3	
 Cannot be accessed directly 	AD12	4		37	A17/S4	
 Indirectly through jump, call, syscall and ret instructions 	AD11 9			36	A18/S5	
	AD10	6			A19/S6	
CDV Control Degisters	AD 9	7		34	BHE/S7	
CRX - Control Registers	AD 8					
 CR0, CR1, CR2, CR3, CR8 	AD 7	_	8086			
 Enable/Disable protected mode 	AD 6		CPU			
CPU Cache control	AD 5 🗖 AD 4 🗖					(HLDA) (WR)
 Page Fault addresses when used with paging 						(WR) (M/ IO)
 Fage Fault addresses when used with paging 						(M/10) (DT/R)
						(DEN)
XDTR - Memory Registers					G oso	(ALE)
GDTR - Global Descriptor Table						
						(
 Define segments and their properties 		19				
 LDTR – Local Descriptor Table 		20		21	RESET	
 Define custom segments with less functionality (e.g. no TSS) 	_L				Γ	
 IDTR - Interrupt Descriptor Table Table with callback functions for interrupts, exceptions and 	The 80 min and		•		0	nts in
traps						

There are 4 privilege modes on x86 also known as rings or levels:

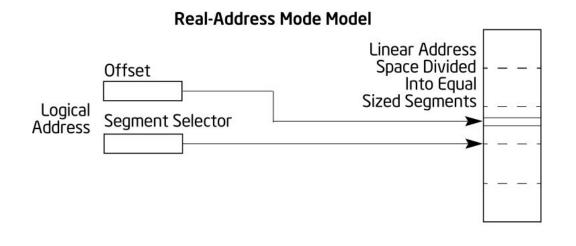
- Ring 0
 - Supervisor mode
 - Can read/write anything in the system
 - Used for OS kernels
- Ring 3
 - Restricted mode, used for user space applications
 - Memory address access restriction
 - Access to certain registers is restricted (e.g Memory control or CPU control registers)
 - Restricted access to specific instructions (e.g. RDMSR, WRMSR)
- Ring 1 and 2 are not used in Linux

/ MIN \


MAX


			_			MAX MODE	(MODE)
x86 CPU	Modes	GND	11	\bigcirc	40		
• Re	al Mode	AD14	2		39	AD 15	
(8086 mode with possibility to switch to protected mode		3		38	A16/S3	
	Processor is placed in this mode after power up or a reset	AD12 🕻 AD11 🕻			37 36	A17/S4	
	stem Management Mode (SMM)	ADII L			35	A19/S6	
•	 Transparent to OS 		7		34		
	Hardware emulation	AD 8	8		33		
		AD 7 🕻	9	8086	32		
	Power management	AD 6	10	CPU	31	RQ/GTO	(HOLD)
(Silicon fixes	AD 5	11		30	RQ/GT1	(HLDA)
(USB support for DOS	AD4	12		29		(WR)
• Pro	otected Mode	AD 3			28	S 2	(M/ 10)
(This is the native operating mode of the processor	AD 2 [AD 1 [14 15		27 26		(DT/ R) (DEN)
(Modern OSes run in this mode	AD I L			20 25		(DEN) (ALE)
	Memory paging can be enabled	NMI D			24		(INTA)
	tual 8086 Mode	INTR	18		23	TEST	
		CLK 🕻	19		22	READY	
		GND	20		21	RESET	
• IA-	32e mode						
(32 bit compatibility mode in 64 bit CPU environment	Tho Q	$\cap Q_i$	2 nin	200	ianma	ntc in

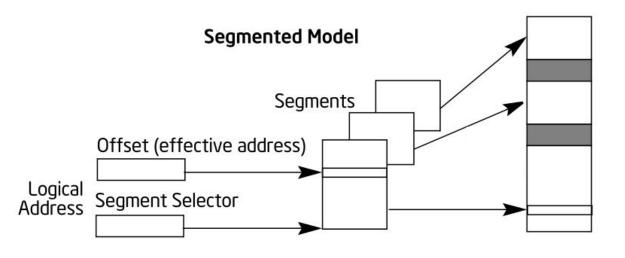
- Flat memory, linear address space
 - Linear address on CPU has one-to-one mapping with the physical address
 - Code, stack and data share the same address space

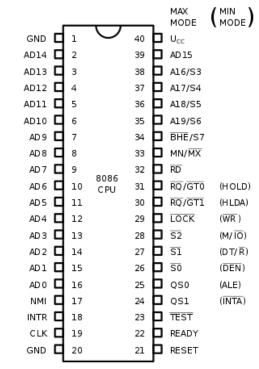




x86 Memory Modes

- 8086 Address space 20 bit wide, registers are 16 bit wide
 - A combination of two 16 bit registers is used for addressing
 - A segment register and a general purpose register
 - The segment register contains a direct memory address

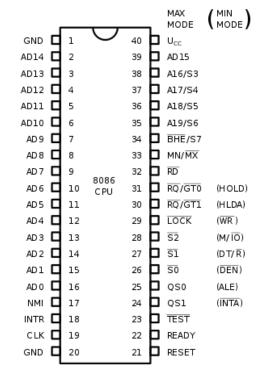




x86 Memory Modes

- Segmented memory model
 - Memory is split into regions of variable size -> segments
 - Each segment is described using a CPU structure Segment
 Descriptor
 - Segments are stored in a table

Segmentation


- Hardware enforced mechanism of isolating individual code, data, and stack modules
- Multiple programs (or tasks) can run on the same processor without interfering with one another.
- Each program can be assigned its own segments.
- Each segment is described by a descriptor
 - Base address Where does the segment start in address space
 - Limit Size of segment
 - Access rights
 - Privilege level
 - Segment type
 - Offset in linear address space (start of its first byte)
- Linux uses segmentation in a very limited way, required by hardware

Version number here V00000

Warning, intel documentation and Linux source code use the terms "linear address", "physical address", "virtual address" very loosely. They are interchanged and should be understood by context of topic

Paging

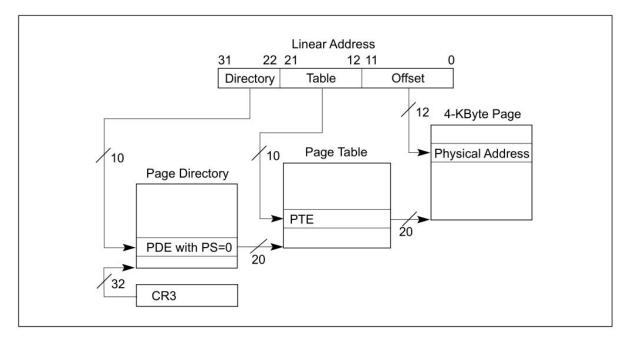
- Linear address space is divided into blocks of same size -> pages or frames
- Size of page is architecture dependant
 - Default 4KB
 - X86 supports also 2MB or 1GB
- OS and CPU keep a track of pages with page specific metadata
 - Physical address
 - Access rights
 - Present
 - Dirty
 - o Global
 - o ...
- Pages are kept in a hierarchical structure **Page Directory**

Page Hierarchy

- Frames are stored in a hierarchical structure Page Directory
- Linear (virtual!) address is cut into chunks (count and length is CPU mode and architecture specific)

31	22 21	1	2 11	0
Director	Ŋ	Table	Ot	fset

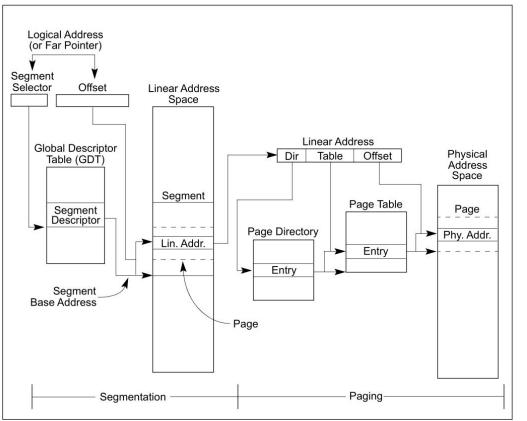
32 bit linear address in a 4-KByte page using 3 level paging.


- Chunks act as indexes into tables -> **Page Tables** and **Page Directories**
- Table entries contain parts of physical memory address or indexes to another paging structure
- Last chunk of the address (low part) contains offset in to the page -> Page Offset
- Depending on the size of the CPU address space, more page tables are needed to describe pages -> **Page Levels**
- On x86 page tables are limited to 4096 bytes -> count of entries changes depending on on CPU paging mode, architecture, ...

			<u> </u>		,	MAX MODE	(MIN MODE)
GND	q	1	\bigcirc	40	Þ	Ucc	
AD14	q	2		39	Þ	AD 15	
AD13	q	3		38	Þ	A16/S3	
AD12	q	4		37	Þ	A17/S4	
AD11	q	5		36	Þ	A18/S5	
AD10	q	6		35	Þ	A19/S6	
AD 9	q	7		34	Þ	BHE/S7	
AD 8	q	8		33	Þ	MN/MX	
AD 7	q	9	8086	32	Þ	RD	
AD 6	q	10	CPU	31	Þ	RQ/GT0	(HOLD)
AD 5	q	11		30	Þ	RQ/GT1	(HLDA)
AD 4	q	12		29	Þ	LOCK	(WR)
AD 3	q	13		28	Þ	S2	(M/ 10)
AD 2	q	14		27	Þ	SI	(D T/ R)
AD 1	q	15		26	Þ	S0	(DEN)
AD 0	q	16		25	Þ	QS0	(ALE)
NMI	q	17		24	Þ	QS1	(INTA)
INTR	q	18		23	Þ	TEST	
CLK	q	19		22	Þ	READY	
GND	q	20		21	Þ	RESET	

The 8086 pin assignments in min and max mode

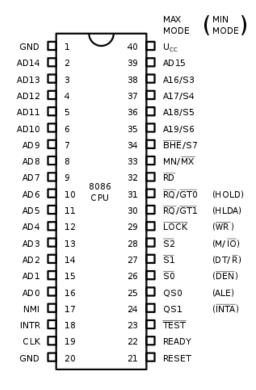
Figure source - Intel documentation



Linear address translation to a 4-KByte page using 32 bit paging

```
Physical address = ((Page Directory Entry & 0xFFFFF) << 20 | Page table Entry & 0xFF000) + (Offset & 0xFFF)
```

Figure source - Intel documentation


Paging and segmentation are the main workhorses of the memory management, protection and isolation in a modern operating system, including Linux.

Update confidential designator here

Figure source - Intel documentation

Intel Documentation	Linux source code
PML5 Table	Page Global Directory, pgd
PLM4 Table	Page Level 4 Directory, pd4
Page-directory-pointer table	Page Upper Directory, pud
Page Directory	Page Middle Directory, pmd
Page Table	Page Table Entry, pte

Thank you! **Questions?**

linkedin.com/company/red-hat

youtube.com/user/RedHatVideos

