
Version number here V00000

Lesson 04

Process
Management

Fall 2024 FI MU

Rado Vrbovsky

<rvrbovsk@redhat.com>

Version number here V00000

Lesson 04 - Overview

● User Point of View
● Kernel Point of View
● Syscalls
● Process Scheduling

Version number here V00000

Process From
User's Point of View

Version number here V00000

What is a process?

Version number here V00000

What is a process?

Code
(Text) Heap Stack File

Descriptors SocketsPID: Thread(s)

Version number here V00000

What is a process?

Code
(Text) Heap Stack File

Descriptors SocketsPID: Thread(s)

Instr. A
Instr. B
Instr. C
...

Free space to
use.
Usually used by
malloc.

func_a ret address
func_b local vars
func_b ret address
func_c local vars
func_c ret address

0: "/dev/ttyS0"
1: "/home/rado"
2: "readme.txt"
...

0: unix
1: ip
...

Version number here V00000

Stack

Heap

Code Kernel
Process A

Address Space

Process address space - Isolation

0 Top of Memory

Stack

Heap

Code Kernel
Process B

Address Space

0 Top of Memory

Shared
Libraries

Shared
Libraries

Version number here V00000

Stack

Heap

Code Kernel
Process A

Address Space

Process and kernel address space

Stack

Heap

Code Kernel
Process B

Address Space

Stack

Heap

Code

Kernel Address
Space

Heap

Code

 PAGE_OFFSET Top of Memory

Shared
Libraries

Shared
Libraries

Shared
Libraries

Stack

Kernel private
data

Version number here V00000

Syscalls

#include <stdio.h>

int main(void) {
 printf("Hello World!\n");
 return 1;
}

hello:
.ascii "Hello, World!\n"

hello_len = . - hello

_start:
mov $1, %rax # syscall number for write
mov $1, %rdi # file descriptor for stdout
mov $hello, %rsi # pointer to the string
mov $hello_len, %rdx # length of the string
syscall # invoke syscall

Exit
mov $60, %rax # syscall number for exit
xor %rdi, %rdi # exit status 0
syscall # invoke syscall

App libC syscall App syscall

Version number here V00000

Syscalls

● Process Management
○ fork
○ exec
○ clone
○ wait
○ kill
○ exit
○ nice
○ getpid
○ ...

● FS Management
○ open
○ read
○ write
○ close
○ stat
○ link
○ unlink
○ ...

● Interprocess
○ kill
○ signal
○ pipe
○ socket
○ msgget
○ msgrcv
○ semget
○ semop
○ ...

● Memory Management
○ brk
○ mmap
○ munmap
○ ...

● Similar to a library call
● Called by number, not by name of the function
● Operations requiring privileged access rights are executed in a safe environment
● Over 500 syscalls

Version number here V00000

brk(0x2800);

sbrk(0x800);

Process Break

0x3000

0x2000

0x1000

Heap

Break

…

…

0x3000

0x2000

0x1000

Heap

Break

…

…

● Break - pointer to end of process data
segment (heap)

● int brk(void *addr);
● void *sbrk(intptr_t increment);

● Don't use brk directly, use malloc

Version number here V00000

The BSD Daemon as drawn by John Lasseter, source wikipedia.

Process Creation

Stack

Heap

File Desc.

Sockets

fork()

Stack

Heap

File Desc.

Sockets

Process A Process B
Step 1. Cloning

● Process A is the parent process
● Process B is the child process
● Both processes are exactly the same (stack,

heap, code, file descriptors …), except the PID,
lock states and pending signals

Version number here V00000

Process Creation

Stack

Heap

File Desc.

Sockets

fork()

Stack

Heap

File Desc.

Sockets

Process A Process B
Step 1. Cloning

● Process A is the parent process
● Process B is the child process
● Both processes are exactly the same (stack,

heap, code, file descriptors …), except the PID

Stack

Heap

File Desc.

Sockets

Process A

Step 2. Execve

Stack

Heap

File Desc.

Sockets

Process B

execve()

● A new binary image is loaded from disk and
completely overwrites address space of the original
process

Version number here V00000

Process Creation

#include <stdio.h>
#include <unistd.h>

int main(void) {
 int pid;

 pid = fork();
 if (pid == 0)
 printf("I am a child!\n");
 else
 printf("I am the parent!\n");

 return 0;
}

● Parent and child are separate processes
● They both continue executing code on the same

instruction (in this example the if statement)

What If …

Version number here V00000

Process Creation

#include <stdio.h>
#include <unistd.h>

int main(void) {
 int pid;

 pid = fork();
 if (pid == 0)
 printf("I am a child!\n");
 else
 printf("I am the parent!\n");

 return 0;
}

● Parent and child are separate processes
● They both continue executing code on the same

instruction (in this example the if statement)

What If …

● You could define what is the child’s entry point
(what function should be executed after fork)

● Parent and child could share pieces of execution
context (file descriptors, heap, stack, …)

Version number here V00000

Process Creation

#include <stdio.h>
#include <unistd.h>

int main(void) {
 int pid;

 pid = fork();
 if (pid == 0)
 printf("I am a child!\n");
 else
 printf("I am the parent!\n");

 return 0;
}

● Parent and child are separate processes
● They both continue executing code on the same

instruction (in this example the if statement)

What If …

● You could define what is the child’s entry point
(what function should be executed after fork)

● Parent and child could share pieces of execution
context (file descriptors, heap, stack, …)

clone()

● Leveraged by the pthread library to create
new threads inside processes

Version number here V00000

Process Synchronization - Signals

$kill –signal SIGHUP <proc_a_pid> sys_kill(pid_t pid, int sig)

#define SIGHUP 1
#define SIGKILL 9
#define SIGSEGV 11
#define SIGTERM 15
#define SIGSTOP 19
...

task->sighand->
->action[sig - 1].sa.sa_handler

proc_a:

int sig_flag = 0;

void my_handler(int s) {
sig_flag |= s;

}
int main(void) {
...

__signalhandler ret;
ret = signal(SIGHUP, my_handler);

...
if (signal_flag) {

Version number here V00000

Process Synchronization - Signals

$kill –signal SIGHUP <proc_a_pid> sys_kill(pid_t pid, int sig)

#define SIGHUP 1
#define SIGKILL 9
#define SIGSEGV 11
#define SIGTERM 15
#define SIGSTOP 19
...

task->sighand->
->action[sig - 1].sa.sa_handler

proc_a:

int sig_flag = 0;

void my_handler(int s) {
sig_flag |= s;

}
int main(void) {
...

__signalhandler ret;
ret = signal(SIGHUP, my_handler);

...
if (signal_flag) {

● There are 64 signals defined in Linux
● Signals are outdated,

use sigaction instead. Or …

Version number here V00000

Process Synchronization - Overview

Pipes
● pipe()
● pipe2()

FIFOs
● mkfifo()
● mknod()

Message Queues
● msgget()
● msgsnd()
● msgrcv()
● msgctl()

Shared Memory
● shmget()
● shmat()
● shmdt()
● shmctl()

Semaphores
● semget()
● semop()
● semctl()

Sockets
● socket()
● bind()
● listen()
● accept()
● connect()
● send*()
● recv*()
● shutdown()
● close()

Signals
● kill()
● sigaction()
● signal()
● sigprocmask()
● sigpending()

sysvipc - System
 V

 Interprocess C
om

m
unication

Version number here V00000

Process Niceness

H
ig

h
pr

io
rit

y

Lo
w

 p
rio

rit
y

-20

20
● Default value is 0
● Use renice to change
● Except nice values, there is also priority value for each process

$ nice
0
$ strace nice
…
getpriority(PRIO_PROCESS, 0) = 20
…
$ ps ax -o pid,ni,cmd

PID NI CMD
 1 0 /usr/lib/systemd/systemd --switched-root --system --deserialize=39 rhgb
 2 0 [kthreadd]
 3 0 [pool_workqueue_release]
 4 -20 [kworker/R-rcu_gp]
 5 -20 [kworker/R-sync_wq]
 6 -20 [kworker/R-slub_flushwq]
...

Version number here V00000

Process States and Transitions

(R) Running - Process is being executed by the CPU

(S) Interruptible sleep - Process is waiting for an event, resource to be available or completion of a
syscall. Process reacts to signals and can be killed

(D) Uninterruptible sleep - Process is sleeping in an uninterruptible wait, usually waiting for a block
device IO. Does not react to signals and cannot be killed

(Z) Zombie - Process has finished its execution of code, but its parent process has not collected its
exit code using the wait() syscall

(T) Traced/Stopped - Process is being traced or stopped.

Version number here V00000

Process From
Kernel's Point of View

Version number here V00000

What is a process?

Code
(Text) Heap Stack File

Descriptors SocketsPID: Thread(s)

==
struct task_struct → Task descriptor

Version number here V00000

Task Descriptor/Task Structure

● One structure per user space or kernel thread

○ Every process has at least one thread

● Large C language structure

○ Contains all information about thread

○ Scheduling information, memory mapping, signals, files, sockets, locks, paging tables, …

● Macro current

○ Architecture specific implementation

○ Points to the task_struct that is being currently executed (e.g. called a syscall)

○ Does not have to be a user space process

Version number here V00000

struct task_struct
struct task_struct {

...
pid_t pid; /* Thread ID */
pid_t tgid; /* Process ID */
...

● task_struct.pid is the thread ID!
● task_struct.gid is the process ID!

○ IF (pid == tgid) → main thread
● Do not access pid and tgid directly, use

○ task_pid_nr(current)
○ task_tgid_nr(current)

Version number here V00000

struct task_struct - family
struct task_struct {

...
struct task_struct __rcu *parent; /* Parent process */
struct list_head children; /* List of children */
struct list_head sibling; /* List of sibling */
...
struct list_head tasks; /* Double linked list of all tasks */
...

P
rocess P

ID
: M

P
rocess P

ID
: N

P
rocess P

ID
: O

P
rocess P

ID
: Z

. . .

Version number here V00000

struct task_struct - family
struct task_struct {

...
struct task_struct __rcu *parent; /* Parent process */
struct list_head children; /* List of children */
struct list_head sibling; /* List of sibling */
...
struct list_head tasks; /* Double linked list of all tasks */
...

#define for_each_process(p)

#define for_each_thread(p, t)

#define for_each_process_thread(p, t)

Version number here V00000

struct task_struct - state

struct task_struct {
...
unsigned int __state;
...

#define TASK_RUNNING 0x00000000
#define TASK_INTERRUPTIBLE 0x00000001
#define TASK_UNINTERRUPTIBLE 0x00000002
...
#define EXIT_DEAD 0x00000010
#define EXIT_ZOMBIE 0x00000020
#define EXIT_TRACE (EXIT_ZOMBIE | EXIT_DEAD)
...
#define task_is_running(task) (READ_ONCE((task)->__state) == TASK_RUNNING)

Version number here V00000

struct task_struct - stacks

struct task_struct {
...

void *stack; /* kernel mode stack */

...

● Userspace threads have separate stacks for userspace and kernel mode
● Kernel threads have no userspace stack
● Userspace stacks are accessible through VMA structures
● Shadow stack - Copy of user space stack

○ Created at entering syscall
○ When returning back to user space, return address to user space is compared with

original stack

Version number here V00000

struct task_struct - affinity

struct task_struct {
...
cpumask_t cpus_mask; /* CPU affinity mask */

...

● Bitmask of individual CPUs where the thread is allowed to run
● Individual threads can be bound, or denied to run on specific CPUs
● Can be modified using syscalls sched_getaffinity, sched_setaffinity, or user space tool

taskset

$ taskset -p 1
pid 1's current affinity mask: ff

Version number here V00000

struct task_struct - scheduler

struct task_struct {
struct thread_info thread_info;
...
const struct sched_class *sched_class;
...
struct thread_struct thread;

}

● task_struct.thread_info
○ Per thread structure, contains a flag field, telling scheduler if thread should be

preempted
○ Defined always as first item

● task_struct.thread
○ Architecture specific, on x86 contains CPU state when thread is preempted
○ Defined always last

Version number here V00000

Memory Space Descriptor mm_struct

task_struct mm_struct

struct task_struct {
struct mm_struct *mm {

...
unsigned long start_code, end_code, start_data, end_data;
unsigned long start_brk, brk, start_stack;
unsigned long arg_start, arg_end, env_start, env_end;
...
struct linux_binfmt *binfmt;
...

● Userspace mapping, NULL for kernel threads

Version number here V00000

Memory Space Descriptor mm_struct

Stack

Heap

Code

Ke
rn

el
Sh
ar
ed

Li
br
ar
ie

s

task_struct mm_struct pgd_t * pgd;

● Top level page directory for each process
○ Multilevel page table hierarchy to translate

linear address to physical address

pgd_t *pgd = current->mm->pgd; // Get the PGD for the
current process

p4d_t *p4d = pgd_offset(pgd, address); // Get the P4D entry
pud_t *pud = p4d_offset(p4d, address); // Get the PUD entry
pmd_t *pmd = pud_offset(pud, address); // Get the PMD entry
pte_t *pte = pmd_offset(pmd, address); // Get the PTE entry

Version number here V00000

Virtual Memory Space Descriptor vm_area_struct

Stack

Heap

Code

Ke
rn

el
Sh
ar
ed

Li
br
ar
ie

s

task_struct mm_struct pgd_t * pgd;

maple_tree mm_mt;

vm_end
vm_start

vm_end
vm_start

vm_end
vm_start

vm_end
vm_start

vm_end
vm_start

● Single continuous region of virtual memory within a
process

● Used for
○ Memory mapping (heap, stack, code, shared

libraries)
○ Memory mapped files
○ Shared memory
○ Anonymous memory (e.g. alloc())

Version number here V00000

Syscalls

Version number here V00000

Syscalls - Uname
$ uname -a
Linux fedora33-kw 6.8.11-200.fc39.x86_64 #1 SMP PREEMPT_DYNAMIC Sun May 26
20:05:41 UTC 2024 x86_64 GNU/Linux

DECLARE_RWSEM(uts_sem); // Uname and hostname semaphore

SYSCALL_DEFINE1(newuname, struct new_utsname __user *, name) // Syscall macro
{
 struct new_utsname tmp; // System information structure

 down_read(&uts_sem); // Take the semaphore
 memcpy(&tmp, utsname(), sizeof(tmp)); // Copy data
 up_read(&uts_sem); // Release the semaphore
 if (copy_to_user(name, &tmp, sizeof(tmp))) // Copy buffer to user space
 return -EFAULT;
 return 0; // Return OK
}

Version number here V00000

Syscalls - Macros
#define SYSCALL_DEFINE1(name, ...) SYSCALL_DEFINEx(1, _##name, __VA_ARGS__)
…
#define SYSCALL_DEFINE6(name, ...) SYSCALL_DEFINEx(6, _##name, __VA_ARGS__)

#define SYSCALL_DEFINEx(x, sname, ...) \
 SYSCALL_METADATA(sname, x, __VA_ARGS__) \
 __SYSCALL_DEFINEx(x, sname, __VA_ARGS__)

● SYSCALL_METADATA - Data for tracing events
● __SYSCALL_DEFINEx - Complex machinery of macros and GCC extensions to create the syscall

implementation

Version number here V00000

Syscalls - Entries

0 common read sys_read
1 common write sys_write
2 common open sys_open

__SYSCALL(0, sys_read)
__SYSCALL(1, sys_write)
__SYSCALL(2, sys_open)

$ sh ./scripts/syscalltbl.sh --abis common,64 arch/x86/entry/syscalls/s
yscall_64.tbl arch/x86/include/generated/asm/syscalls_64.h

#define __SYSCALL(nr, sym) case nr: return __x64_##sym(regs);

Version number here V00000

Syscalls - Table

long x64_sys_call(const struct pt_regs *regs, unsigned int nr)
{
 switch (nr) {
 #include <asm/syscalls_64.h>
 default: return __x64_sys_ni_syscall(regs);
 }
};

__SYSCALL(0, sys_read)
__SYSCALL(1, sys_write)
__SYSCALL(2, sys_open)

Version number here V00000

Copying data to and from user space

Copy simple values:
● get_user(x, ptr); // Get a simple variable from user space.
● put_user(x, ptr); // Write a simple value into user space.

○ x - Variable to store result
○ ptr - Source/Destination address, in user space.

Copy data:
● copy_from_user(void *to, const void __user *from, unsigned long n);
● copy_to_user(void __user *to, const void *from, unsigned long n);

Version number here V00000

Process Scheduler

Version number here V00000

Scheduler

● Divide CPU resources between competing consumers (user/kernel threads)

● Smallest scheduled unit is a thread (every process has at least one thread)

● Thread state machine is defined using flags

● Threads being executed or are ready to be executed are stored in a structure named

runqueue
● Sleeping threads are stored in waitqueue
● Each CPU has its own runqueues

● Waitqueue is created by device drivers and the kernel, there can be many wait queues

Version number here V00000

Context Switch / Process Swap

Threads leave the CPU in one of two ways:

● Voluntary

○ Thread is waiting for an IO operation to finish

○ Thread is waiting for a lock to be opened

○ Thread decides to sleep

● Involuntary

○ Scheduling: When the CPU scheduler decides to switch to a different thread based on scheduling

policies (e.g. processes exceeded its scheduled allocation of CPU time)

○ Preemption: When a higher-priority thread becomes ready to run and preempts the currently executing

thread.

Version number here V00000

Context Switch / Process Swap

● Architecture specific

● Expensive operation

○ Saving CPU state of current thread (previous)

○ Installing MM settings of the new (next) thread

○ Restoring CPU state of the new (next) thread

■ context_switch(...)

Version number here V00000

Scheduler Policies

● Linux scheduler consists of several scheduling policies

● Scheduling policy == scheduling algorithm

● Every thread in the system is associated with only one policy

● Current scheduling policies

○ SCHED_DEADLINE

○ SCHED_FIFO, SCHED_RR

○ SCHED_NORMAL, SCHED_BATCH

○ SCHED_IDLE

Version number here V00000

Scheduling Classes

● Abstraction classes that hold the individual scheduling policies

● New classes can be added and removed to source code depending on need

● Each scheduling class has a different model how to select eligible tasks/threads, each scheduling class

maintains its own runqueue

struct sched_class {
…
 void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
 void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
…

struct task_struct *(*pick_next_task)(struct rq *rq);
…

void (*task_tick)(struct rq *rq, struct task_struct *p, int queued);
…
}

Version number here V00000

Stop Scheduler Class

● Does not have a policy

● Highest priority

● Can preempt everything and is preempted by nothing

● Available only on SPM

● One kernel thread per CPU

○ “migration/N”

● Used by task migration, CPU Hotplug, RCUs, ftrace, kernel live patching

Version number here V00000

(Early) Deadline Scheduler Class

● Policy SCHED_DEADLINE

● The task with the earliest deadline will be served first

● User has to set 3 parameters

○ Period - activation pattern of the real time task

○ Runtime - amount of CPU time that the application needs

○ Deadline - maximum time in which the result must be delivered

● Used for periodic real time tasks e.g. multimedia, industrial control

Version number here V00000

Real Time Scheduler Class

● Used for short latency sensitive tasks

● Two policies

● SCHED_FIFO
○ AKA POSIX scheduler
○ Runqueue is a FIFO pipe
○ Thread will run until it voluntary yields the CPU
○ Real time aggressive

● SCHED_RR
○ 100ms time slice by default
○ Round Robin scheduler
○ Realtime moderately aggressive

Version number here V00000

CFS - Completely Fair Scheduler

● Most common used scheduler, used for the rest of the all tasks in the system

● Introduced by Ingo Molnar in 2007, for long time the only scheduler

● Scheduling policies

○ SCHED_NORMAL - Normal Unix tasks, default scheduler

○ SCHED_BATCH - Low priority, non interactive jobs

● Implemented with red-black trees

● Tracks virtual runtime of tasks (amount of time a task has run) in nanoseconds

● Tasks with shortest vruntime runs first, left most node in the RB tree

● Priority is used to set tasks weight, slower will vruntime increase

● Kernel will reset all the vruntime values in RB tree when starting a new scheduling epoch

Version number here V00000

Idle Scheduler

● Lowest priority scheduling class

● No scheduling policies

● One kernel thread (idle) per CPU

○ “swapper/N”

● Idle thread runs only when nothing else is runnable on a CPU

● Puts the CPU in a deep sleep state and is woken when there is a thread to run

● There is always only one task in idle class

Version number here V00000

The Extensible Scheduler

● Scheduling policy SCHED_EXT

● Introduced recently (Jan 2023, The future is now!)

● Idea of “plugable schedulers”

● Not really a scheduler itself, but a framework

● Uses eBPF technology

○ Runtime load schedulers from userspace

○ Without need to recompile the kernel

○ Allows safe experimentation

○ Library of schedulers for niche applications (e.g. service, specific game, …)

Version number here V00000

Scheduler Code

● schedule() → __schedule() → __pick_next_task()
● Classes are ordered by the task priority they cover, classes with higher priority are being queried first

● __pick_next_class returns a pointer to the task_struct it self which will be executed

static inline struct task_struct *
__pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
{
 const struct sched_class *class;
 struct task_struct *p;
. . .
 for_each_class(class) {
 p = class->pick_next_task(rq);
 if (p)
 return p;
 }

 BUG(); /* The idle class should always have a runnable task. */
}

Version number here V00000

Thread Scheduling

● Thread state machine is defined using flags

○ task_struct.thread_info.flas |= TIF_NEED_RESCHED

■ set_tsk_need_resched(struct task_struct *tsk)

● Who is calling the scheduler?

○ Executed in context of current process

○ Return from syscall

○ Return from interrupt

Version number here V00000

Thank you!

Questions?

