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Lesson 04 - Overview

● User Point of View
● Kernel Point of View
● Syscalls
● Process Scheduling
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Process From
User's Point of View
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What is a process?
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What is a process?

Code
(Text) Heap Stack File

Descriptors SocketsPID: Thread(s)
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What is a process?

Code
(Text) Heap Stack File

Descriptors SocketsPID: Thread(s)

Instr. A
Instr. B
Instr. C
...

Free space to 
use.
Usually used by 
malloc.

func_a ret address
func_b local vars
func_b ret address
func_c local vars
func_c ret address

0: "/dev/ttyS0"
1: "/home/rado"
2: "readme.txt"
...

0: unix
1: ip
...
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Stack

Heap

Code Kernel
Process A 

Address Space

Process address space - Isolation

0                                                Top of Memory

Stack

Heap

Code Kernel
Process B 

Address Space

0                                                Top of Memory

Shared
Libraries

Shared
Libraries
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Stack

Heap

Code Kernel
Process A 

Address Space

Process and kernel address space

Stack

Heap

Code Kernel
Process B 

Address Space

Stack

Heap

Code

Kernel Address 
Space

Heap

Code

 PAGE_OFFSET                                                Top of Memory

Shared
Libraries

Shared
Libraries

Shared
Libraries

Stack

Kernel private 
data
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Syscalls

#include <stdio.h>

int main(void) {
    printf("Hello World!\n");
    return 1;
}

hello:
.ascii "Hello, World!\n"

hello_len = . - hello

_start:
mov $1, %rax      # syscall number for write
mov $1, %rdi      # file descriptor for stdout
mov $hello, %rsi  # pointer to the string
mov $hello_len, %rdx  # length of the string
syscall           # invoke syscall

# Exit
mov $60, %rax     # syscall number for exit
xor %rdi, %rdi    # exit status 0
syscall           # invoke syscall

App libC syscall App syscall
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Syscalls

● Process Management
○ fork
○ exec
○ clone
○ wait
○ kill
○ exit
○ nice
○ getpid
○ ...

● FS Management
○ open
○ read
○ write
○ close
○ stat
○ link
○ unlink
○ ...

● Interprocess
○ kill 
○ signal
○ pipe
○ socket
○ msgget
○ msgrcv
○ semget
○ semop
○ ...

● Memory Management
○ brk
○ mmap
○ munmap
○ ...

● Similar to a library call
● Called by number, not by name of the function
● Operations requiring privileged access rights are executed in a safe environment
● Over 500 syscalls
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brk(0x2800);

sbrk(0x800);

Process Break

0x3000

0x2000

0x1000

Heap

Break

…

…

0x3000

0x2000

0x1000

Heap

Break

…

…

● Break - pointer to end of  process data 
segment (heap)

● int brk(void *addr);
● void *sbrk(intptr_t increment);

● Don't use brk directly, use malloc
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The BSD Daemon as drawn by John Lasseter, source wikipedia.

Process Creation

Stack

Heap

File Desc.

Sockets

fork()

Stack

Heap

File Desc.

Sockets

Process A Process B
Step 1. Cloning

● Process A is the parent process
● Process B is the child process
● Both processes are exactly the same (stack, 

heap, code, file descriptors …), except the PID, 
lock states and pending signals
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Process Creation

Stack

Heap

File Desc.

Sockets

fork()

Stack

Heap

File Desc.

Sockets

Process A Process B
Step 1. Cloning

● Process A is the parent process
● Process B is the child process
● Both processes are exactly the same (stack, 

heap, code, file descriptors …), except the PID

Stack

Heap

File Desc.

Sockets

Process A

Step 2. Execve

Stack

Heap

File Desc.

Sockets

Process B

execve()

● A new binary image is loaded from disk and 
completely overwrites address space of the original 
process
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Process Creation

#include <stdio.h>
#include <unistd.h>

int main(void) {
    int pid;

    pid = fork();
    if (pid == 0)
            printf("I am a child!\n");
    else
            printf("I am the parent!\n");

    return 0;
}

● Parent and child are separate processes
● They both continue executing code on the same 

instruction (in this example the if statement)

What If …
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Process Creation

#include <stdio.h>
#include <unistd.h>

int main(void) {
    int pid;

    pid = fork();
    if (pid == 0)
            printf("I am a child!\n");
    else
            printf("I am the parent!\n");

    return 0;
}

● Parent and child are separate processes
● They both continue executing code on the same 

instruction (in this example the if statement)

What If …

● You could define what is the child’s entry point 
(what function should be executed after fork)

● Parent and child could share pieces of execution 
context (file descriptors, heap, stack, …)
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Process Creation

#include <stdio.h>
#include <unistd.h>

int main(void) {
    int pid;

    pid = fork();
    if (pid == 0)
            printf("I am a child!\n");
    else
            printf("I am the parent!\n");

    return 0;
}

● Parent and child are separate processes
● They both continue executing code on the same 

instruction (in this example the if statement)

What If …

● You could define what is the child’s entry point 
(what function should be executed after fork)

● Parent and child could share pieces of execution 
context (file descriptors, heap, stack, …)

clone()

● Leveraged by the pthread library to create 
new threads inside processes
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Process Synchronization - Signals

$kill –signal SIGHUP <proc_a_pid> sys_kill(pid_t pid, int sig)

#define SIGHUP       1
#define SIGKILL      9
#define SIGSEGV     11
#define SIGTERM     15
#define SIGSTOP     19
...

task->sighand->
->action[sig - 1].sa.sa_handler

proc_a:

int sig_flag = 0;

void my_handler(int s) {
sig_flag |= s;

}
int main(void) {
...

__signalhandler ret;
ret = signal(SIGHUP, my_handler);

...
if (signal_flag) {
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Process Synchronization - Signals

$kill –signal SIGHUP <proc_a_pid> sys_kill(pid_t pid, int sig)

#define SIGHUP       1
#define SIGKILL      9
#define SIGSEGV     11
#define SIGTERM     15
#define SIGSTOP     19
...

task->sighand->
->action[sig - 1].sa.sa_handler

proc_a:

int sig_flag = 0;

void my_handler(int s) {
sig_flag |= s;

}
int main(void) {
...

__signalhandler ret;
ret = signal(SIGHUP, my_handler);

...
if (signal_flag) {

● There are 64 signals defined in Linux
● Signals are outdated,

use sigaction instead. Or …
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Process Synchronization - Overview

Pipes
● pipe()
● pipe2()

FIFOs
● mkfifo()
● mknod()

Message Queues
● msgget()
● msgsnd()
● msgrcv()
● msgctl()

Shared Memory
● shmget()
● shmat()
● shmdt()
● shmctl()

Semaphores
● semget()
● semop()
● semctl()

Sockets
● socket()
● bind()
● listen()
● accept()
● connect()
● send*()
● recv*()
● shutdown()
● close()

Signals
● kill()
● sigaction()
● signal()
● sigprocmask()
● sigpending()

sysvipc - System
 V

 Interprocess C
om

m
unication
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Process Niceness

H
ig

h 
pr

io
rit

y

Lo
w

 p
rio

rit
y

-20

20
● Default value is 0
● Use renice to change 
● Except nice values, there is also priority value for each process

$ nice
0
$ strace nice
…
getpriority(PRIO_PROCESS, 0)        = 20
…
$ ps ax -o pid,ni,cmd

PID  NI CMD
  1   0 /usr/lib/systemd/systemd --switched-root --system --deserialize=39 rhgb
  2   0 [kthreadd]
  3   0 [pool_workqueue_release]
  4 -20 [kworker/R-rcu_gp]
  5 -20 [kworker/R-sync_wq]
  6 -20 [kworker/R-slub_flushwq]
...
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Process States and Transitions

(R) Running - Process is being executed by the CPU

(S) Interruptible sleep - Process is waiting for an event, resource to be available or completion of a 
syscall. Process reacts to signals and can be killed

(D) Uninterruptible sleep - Process  is sleeping in an uninterruptible wait, usually waiting for a block 
device IO. Does not react to signals and cannot be killed

(Z) Zombie - Process has finished its execution of code, but its parent process has not collected its 
exit code using the wait() syscall

(T) Traced/Stopped - Process is being traced or stopped.
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Process From
Kernel's Point of View
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What is a process?

Code
(Text) Heap Stack File

Descriptors SocketsPID: Thread(s)

==
struct task_struct → Task descriptor
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Task Descriptor/Task Structure

● One structure per user space or kernel thread 

○ Every process has at least one thread

● Large C language structure

○ Contains all information about thread

○ Scheduling information, memory mapping, signals, files, sockets, locks, paging tables, … 

● Macro current 

○ Architecture specific implementation

○ Points to the task_struct that is being currently executed (e.g. called a syscall)

○ Does not have to be a user space process



Version number here V00000

struct task_struct
struct task_struct {

...
pid_t pid; /* Thread ID */
pid_t tgid; /* Process ID */
...

● task_struct.pid is the thread ID!
● task_struct.gid is the process ID!

○ IF (pid == tgid) → main thread
● Do not access pid and tgid directly, use

○ task_pid_nr(current)
○ task_tgid_nr(current)
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struct task_struct - family
struct task_struct {

...
struct task_struct __rcu *parent; /* Parent process */
struct list_head    children;    /* List of children */
struct list_head    sibling;  /* List of sibling */
...
struct list_head    tasks;    /* Double linked list of all tasks */
...

P
rocess P

ID
: M

P
rocess P

ID
: N

P
rocess P

ID
: O

P
rocess P

ID
: Z

. . . 
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struct task_struct - family
struct task_struct {

...
struct task_struct __rcu *parent; /* Parent process */
struct list_head    children;    /* List of children */
struct list_head    sibling;  /* List of sibling */
...
struct list_head    tasks;    /* Double linked list of all tasks */
...

#define for_each_process(p) 

#define for_each_thread(p, t)

#define for_each_process_thread(p, t)
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struct task_struct - state

struct task_struct {
...
unsigned int __state;
...

#define TASK_RUNNING                0x00000000
#define TASK_INTERRUPTIBLE          0x00000001
#define TASK_UNINTERRUPTIBLE        0x00000002
...
#define EXIT_DEAD                   0x00000010
#define EXIT_ZOMBIE                 0x00000020
#define EXIT_TRACE                  (EXIT_ZOMBIE | EXIT_DEAD)
...
#define task_is_running(task)       (READ_ONCE((task)->__state) == TASK_RUNNING)
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struct task_struct - stacks

struct task_struct {
...

void *stack; /* kernel mode stack */

...

● Userspace threads have separate stacks for userspace and kernel mode
● Kernel threads have no userspace stack
● Userspace stacks are accessible through VMA structures
● Shadow stack - Copy of user space stack

○ Created at entering syscall
○ When returning back to user space, return address to user space is compared with 

original stack
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struct task_struct - affinity

struct task_struct {
...
cpumask_t             cpus_mask; /* CPU affinity mask */

 
...

● Bitmask of individual CPUs where the thread is allowed to run
● Individual threads can be bound, or denied to run on specific CPUs
● Can be modified using syscalls sched_getaffinity, sched_setaffinity, or user space tool 

taskset

$ taskset -p 1
pid 1's current affinity mask: ff
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struct task_struct - scheduler

struct task_struct {
struct thread_info          thread_info;
...
const struct sched_class    *sched_class;
...
struct thread_struct   thread;

}

● task_struct.thread_info
○ Per thread structure, contains a flag field, telling scheduler if thread should be 

preempted 
○ Defined always as first item

● task_struct.thread
○ Architecture specific, on x86 contains CPU state when thread is preempted
○ Defined always last 
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Memory Space Descriptor mm_struct

task_struct mm_struct

struct task_struct {
struct mm_struct *mm {

...
unsigned long start_code, end_code, start_data, end_data;
unsigned long start_brk, brk, start_stack;
unsigned long arg_start, arg_end, env_start, env_end;
...
struct linux_binfmt *binfmt;
...

● Userspace mapping, NULL for kernel threads
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Memory Space Descriptor mm_struct

Stack

Heap

Code
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task_struct mm_struct pgd_t * pgd;

● Top level page directory for each process
○ Multilevel page table hierarchy to translate 

linear address to physical address

pgd_t *pgd = current->mm->pgd; // Get the PGD for the 
current process

p4d_t *p4d = pgd_offset(pgd, address); // Get the P4D entry
pud_t *pud = p4d_offset(p4d, address); // Get the PUD entry
pmd_t *pmd = pud_offset(pud, address); // Get the PMD entry
pte_t *pte = pmd_offset(pmd, address); // Get the PTE entry
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Virtual Memory Space Descriptor vm_area_struct

Stack

Heap

Code
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task_struct mm_struct pgd_t * pgd;

maple_tree mm_mt;

vm_end
vm_start

vm_end
vm_start

vm_end
vm_start

vm_end
vm_start

vm_end
vm_start

● Single continuous region of virtual memory within a 
process

● Used for
○ Memory mapping (heap, stack, code, shared 

libraries)
○ Memory mapped files
○ Shared memory
○ Anonymous memory (e.g. alloc())
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Syscalls
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Syscalls - Uname
$ uname -a
Linux fedora33-kw 6.8.11-200.fc39.x86_64 #1 SMP PREEMPT_DYNAMIC Sun May 26 
20:05:41 UTC 2024 x86_64 GNU/Linux

DECLARE_RWSEM(uts_sem); // Uname and hostname semaphore

SYSCALL_DEFINE1(newuname, struct new_utsname __user *, name) // Syscall macro
{
    struct new_utsname tmp; // System information structure

    down_read(&uts_sem); // Take the semaphore
    memcpy(&tmp, utsname(), sizeof(tmp)); // Copy data
    up_read(&uts_sem); // Release the semaphore
    if (copy_to_user(name, &tmp, sizeof(tmp))) // Copy buffer to user space
            return -EFAULT;
    return 0; // Return OK
}
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Syscalls - Macros
#define SYSCALL_DEFINE1(name, ...) SYSCALL_DEFINEx(1, _##name, __VA_ARGS__)
…
#define SYSCALL_DEFINE6(name, ...) SYSCALL_DEFINEx(6, _##name, __VA_ARGS__)

#define SYSCALL_DEFINEx(x, sname, ...)                      \
    SYSCALL_METADATA(sname, x, __VA_ARGS__)             \
    __SYSCALL_DEFINEx(x, sname, __VA_ARGS__)

● SYSCALL_METADATA - Data for tracing events
● __SYSCALL_DEFINEx -   Complex machinery of macros and GCC extensions to create the syscall 

implementation
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Syscalls - Entries

0   common  read                sys_read
1   common  write               sys_write
2   common  open                sys_open

__SYSCALL(0, sys_read)
__SYSCALL(1, sys_write)
__SYSCALL(2, sys_open)

$ sh ./scripts/syscalltbl.sh --abis common,64 arch/x86/entry/syscalls/s
yscall_64.tbl arch/x86/include/generated/asm/syscalls_64.h

#define __SYSCALL(nr, sym) case nr: return __x64_##sym(regs);
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Syscalls - Table

long x64_sys_call(const struct pt_regs *regs, unsigned int nr)
{
    switch (nr) {
    #include <asm/syscalls_64.h>
    default: return __x64_sys_ni_syscall(regs);
    }   
};

__SYSCALL(0, sys_read)
__SYSCALL(1, sys_write)
__SYSCALL(2, sys_open)



Version number here V00000

Copying data to and from user space

Copy simple values:
● get_user(x, ptr); // Get a simple variable from user space.
● put_user(x, ptr); // Write a simple value into user space.

○ x - Variable to store result
○ ptr - Source/Destination address, in user space.

Copy data:
● copy_from_user(void *to, const void __user *from, unsigned long n);
● copy_to_user(void __user *to, const void *from, unsigned long n);
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Process Scheduler
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Scheduler

● Divide CPU resources between competing consumers (user/kernel threads)

● Smallest scheduled unit is a thread (every process has at least one thread)

● Thread state machine is defined using flags

● Threads being executed or are ready to be executed are stored in a structure named 

runqueue
● Sleeping threads are stored in waitqueue
● Each CPU has its own runqueues

● Waitqueue is created by device drivers and the kernel, there can be many wait queues
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Context Switch / Process Swap

Threads leave the CPU in one of two ways:

● Voluntary

○ Thread is waiting for an IO operation to finish

○ Thread is waiting for a lock to be opened

○ Thread decides to sleep

● Involuntary

○ Scheduling: When the CPU scheduler decides to switch to a different thread based on scheduling 

policies (e.g. processes exceeded its scheduled allocation of CPU time)

○ Preemption: When a higher-priority thread becomes ready to run and preempts the currently executing 

thread.
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Context Switch / Process Swap

● Architecture specific

● Expensive operation

○ Saving CPU state of current thread (previous)

○ Installing MM settings of the new (next) thread

○ Restoring CPU state of the new (next) thread

■ context_switch(...)



Version number here V00000

Scheduler Policies

● Linux scheduler consists of several scheduling policies

● Scheduling policy == scheduling algorithm

● Every thread in the system is associated with only one policy

● Current scheduling policies

○ SCHED_DEADLINE

○ SCHED_FIFO, SCHED_RR

○ SCHED_NORMAL, SCHED_BATCH

○ SCHED_IDLE
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Scheduling Classes

● Abstraction classes that hold the individual scheduling policies

● New classes can be added and removed to source code depending on need

● Each scheduling class has a different model how to select eligible tasks/threads, each scheduling class 

maintains its own runqueue

struct sched_class {
…
    void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
    void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
…

struct task_struct *(*pick_next_task)(struct rq *rq);
…

void (*task_tick)(struct rq *rq, struct task_struct *p, int queued);
…
}
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Stop Scheduler Class

● Does not have a policy

● Highest priority

● Can preempt everything and is preempted by nothing

● Available only on SPM

● One kernel thread per CPU 

○ “migration/N”

● Used by task migration, CPU Hotplug, RCUs, ftrace, kernel live patching
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(Early) Deadline Scheduler Class

● Policy SCHED_DEADLINE

● The task with the earliest deadline will be served first

● User has to set 3 parameters

○ Period - activation pattern of the real time task

○ Runtime - amount of CPU time that the application needs

○ Deadline - maximum time in which the result must be delivered

● Used for periodic real time tasks e.g. multimedia, industrial control
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Real Time Scheduler Class

● Used for short latency sensitive tasks

● Two policies

● SCHED_FIFO
○ AKA POSIX scheduler
○ Runqueue is a FIFO pipe
○ Thread will run until it voluntary yields the CPU
○ Real time aggressive

● SCHED_RR
○ 100ms time slice by default
○ Round Robin scheduler
○ Realtime moderately aggressive
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CFS - Completely Fair Scheduler

● Most common used scheduler, used for the rest of the all tasks in the system

● Introduced by Ingo Molnar in 2007, for long time the only scheduler

● Scheduling policies

○ SCHED_NORMAL - Normal Unix tasks, default scheduler

○ SCHED_BATCH - Low priority, non interactive jobs

● Implemented with red-black trees

● Tracks virtual runtime of tasks (amount of time a task has run) in nanoseconds

● Tasks with shortest vruntime runs first, left most node in the RB tree

● Priority is used to set tasks weight, slower will vruntime increase

● Kernel will reset all the vruntime values in RB tree when starting a new scheduling epoch
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Idle Scheduler

● Lowest priority scheduling class

● No scheduling policies

● One kernel thread (idle) per CPU

○ “swapper/N”

● Idle thread runs only when nothing else is runnable on a CPU

● Puts the CPU in a deep sleep state and is woken when there is a thread to run

● There is always only one task in idle class
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The Extensible Scheduler

● Scheduling policy SCHED_EXT

● Introduced recently (Jan 2023, The future is now!)

● Idea of “plugable schedulers”

● Not really a scheduler itself, but a framework

● Uses eBPF technology 

○ Runtime load schedulers from userspace

○ Without need to recompile the kernel

○ Allows safe experimentation

○ Library of schedulers for niche applications (e.g. service, specific game, …) 



Version number here V00000

Scheduler Code

● schedule() → __schedule() → __pick_next_task()
● Classes are ordered by the task priority they cover, classes with higher priority are being queried first

● __pick_next_class returns a pointer to the task_struct it self which will be executed

static inline struct task_struct *
__pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
{
    const struct sched_class *class;
    struct task_struct *p;
. . .
    for_each_class(class) {
            p = class->pick_next_task(rq);
            if (p)
                    return p;
    }

    BUG(); /* The idle class should always have a runnable task. */
}
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Thread Scheduling

● Thread state machine is defined using flags

○ task_struct.thread_info.flas |= TIF_NEED_RESCHED

■ set_tsk_need_resched(struct task_struct *tsk)

● Who is calling the scheduler?

○ Executed in context of current process

○ Return from syscall

○ Return from interrupt
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Thank you!

Questions?


