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Overview ▸ What is concurrency?
▸ Race conditions and deadlocks
▸ Synchronization mechanisms on Linux
▸ When to use them
▸ When NOT to use them
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Introduction to 
synchronization
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▸ Programming was easier

･ Computers had a single CPU and a single thread of 
execution

･ There was a single program running at a time

▸ We have a complete different scenario now

･ Hundreds of CPUs, cores (or both)

･ CPUs able to run different instructions simultaneously

･ OS’es juggling thousands of processes/threads and users at 
the same time.

Context: Early days of Computing
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Kernel perspective
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▸ Kernel code can also be executed concurrently

･ Even within the same CPU. Concurrency can happen with a 
single CPU.

▸ Different levels of concurrency within the kernel which may 
contain critical sections

･ Interrupt context

･ Preemption

･ Shared Resources

Concurrency within the kernel
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What should be 
protected against 
concurrent access? 



Optional section marker

8

https://kernelnewbies.org/BigKernelLock

▸ Always keep that in mind…

･ Locks must be used to protect data structure from 
concurrent access, not to protect your code.

▸ Look at a data structure and think what should be protected 
there.

▸ Code-centered locking design always end up in disasters 
sometime in the future.

･ Search for how long it took to get rid of kernel’s BKL

Locks exist to protect data, not code
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▸ Any data that can be accessed by more than one thread

･ Keep in mind that even a single CPU can concurrently 
access the same code (thanks to preemption and 
interrupts)

▸ Ask yourself

･ If the code sleeps while accessing data, can the new 
scheduled code access the same data?

･ If the code gets interrupted by an IRQ… Can the IRQ 
handler access the very same data?

Concurrency within the kernel
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Race conditions
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▸ Caused when two or more threads concurrently access the same 
data structure and at least one is modifying it.

▸ Race conditions might be extremely difficult to find

▸ They are hard to reproduce, as they are time dependent.

･ More often than not, adding instrumentation will hide the 
bug

The most annoying of all bugs
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▸ A single integer variable accessed by more than one thread

･ 1 Thread increments the variable

･ 1 Thread reads the variable

▸ This is pretty simple… But what could go wrong?

Case study 1
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int a=0;
a++;

Case study 1  (cont.)

  mov addr, reg

  add $1, reg

  mov reg, addr
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▸ A real race condition within tmpfs quota code

Case study 2
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Deadlocks
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▸ One or more threads attempt to lock a specific resource that is 
already held

･ For some reason (that we shall see), this held resource can 
never be released by the current holder.

･ The waiting thread will never make progress

What are deadlocks?
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▸ Four conditions must be met so a deadlock may occur

･ Mutual exclusion

･ Hold and wait

･ No preemption

･ Circular wait

Deadlock conditions
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▸ Self-deadlock

▸ ABBA deadlock

･ Lock inversion

Common deadlocks
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▸ Eliminate one of the four conditions previously

▸ Strict lock ordering

▸ Ensure the lock is released at some point

･ Will the code, holding this lock, ever finish?

･ Can it wait forever?

▸ Don’t double acquire locks (kernel doesn’t allow that anyway)

･ Lock recursion is not allowed in Linux kernel

▸ Simplicity by design

How do we prevent deadlocks?
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Lock contention
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▸ Serialization caused by locking, may have a significant impact on 
performance.

▸ Consider lock “granularity”

･ How much data does a specific lock protect?

･ Coarse locks VS. Fine grained locks

Resources serialization
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▸ task_struct

･ What would happen if the whole task_struct was protected 
by a single lock?

･ How many locks are used within the task struct?

task_struct as example
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▸ Fine grained locking reduces contention, but…

･ It does also add a lot of overhead.

･ Adds complexity

▸ Consider what kind of system that software will run.

▸ Extra locking overhead may kill small systems performance

Careless scalability
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Instruction 
ordering and
memory barriers
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▸ Compilers and processors are free to reorder instructions

･ Including load and store memory instructions

▸ Because sometimes instructions order are important, we must 
be able to control it.

･ We must be able to guarantee that a specific read happens 
before another, or

･ That a write appears before any subsequent read

▸ Compilers and CPUs able to reorder operations, provide machine 
instructions to enforce ordering requirements, aka barriers

Instruction ordering
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▸ Let’s get a couple instructions:

a=1;

b=2;

▸ Nothing prevents the compiler or the CPU to process the second 
instruction first.

･ Compiler may statically reorder it within the object code

･ The CPU however, could dynamically reorder it by fetching 
and dispatching them in different order.

Ordering example
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▸ When there is no clear relationship between both instructions.

▸ These instructions would not be reordered:

･ a = 1;

･ b = a;

▸ The compiler and the CPU though, doesn’t know about the code 
in different contexts.

▸ It’s our job to tell both about the specific ordering.

When reordering may happen
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▸ Memory barriers and compiler directives are architecture 
dependent

･ Intel as example, never performs out-of-order store 
operations.

▸ We must not make any assumptions on which hardware our 
code will be running.

･ Unless of course, you are writing architecture-specific code.

▸ But…. There is yet another problem…

Architecture dependency, yet again
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▸ The following code:

while (tmp = a)

         call_function(tmp);

▸ If the compiler can prove the variable ‘a’ is always zero, it may optimize 
to:

do {} while (0);

▸ Giving the compiler is not context aware.

･ What would happen if ‘‘a’ variable is shared and is actually updated 
from a different context?

Compiler optimizations
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▸ If you are lucky, you will likely spend hours trying to understand why the 
kernel is crashing.

･ If you are not, you’ll spend months trying to understand why it is 
misbehaving once in a while.

▸ And in such cases, we must explicitly tell the compiler that it should read 
variable ‘a’ every loop interaction.

Compiler optimizations #2
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▸ Be aware not only of how the CPUs will execute the code, but also

▸ How the compiler will treat such code.

･ Which optimizations it may do to the code and what consequences 
it will have.

▸ This is a place where learning ASM really pay dividends

･ Understanding how the generated assembly relates to the code 
you wrote is a great way to spot any unwanted optimizations.

What to take away from all of this?
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Synchronization 
within Linux
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▸ Macros used to manipulate CPU memory barriers (Run-time barriers)

･ rmb()  -  Read memory barrier

･ wmb() - Write memory barrier

･ mb()    - RW memory barrier

▸ These macros guarantee ordering of load/store instructions

･ Any load/store instruction coded before the barrier, will be 
executed before any instruction coded after the barrier.

CPU memory barriers
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▸ barrier()

･ Explicitly tell the compiler to not move memory accesses across the  
barrier, enforcing memory access ordering.

▸ READ_ONCE() and WRITE_ONCE()

･ It tells the compiler it must re-read/re-write the variable each time 
it is called.

･ while (tmp = READ_ONCE(a)) { do_something(tmp) };

▸ Please don’t use volatile type class (with some rare exceptions)

･ It is rarely acceptable in Linux kernel and its use is almost never 
correct.

Compiler barriers

https://www.kernel.org/doc/html/latest/process/volatile-considered-harmful.html
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▸ A collection of instructions that execute atomically

▸ Architecture specific implementation

▸ Linux provides two types of atomic operations

･ Integer-based

･ Bitwise

▸ Linux provides a special data type for atomic operations

･ atomic_t

Atomic operations
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▸ Fastest synchronization method, introducing no overhead 
compared to locking.

▸ No need to implement locking to protect small portions of data, 
like integers or single-bit changes

▸ Many locking primitives end up relying on atomic operations

▸ Usually are implemented as inline functions with inline 
assembly.

▸ It’s a no-brainer for some architectures

Atomic operations #2
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▸ Having a specific type guarantees type check, so atomic 
functions only accept atomic_t types.

▸ Prevents somebody using atomic data types with non-atomic 
functions.

▸ The atomic_t, prevents the compiler to do some ‘clever 
optimizations’ on these types.

▸ Prevent ourselves to use atomic types on non atomic operations

･ atomic_t VAR = 10;

atomic_t data type
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▸ atomic_t variables are ALWAYS 32 bits

▸ Another type - atomic64_t can be used for 64-bit atomic 
operations

▸ Most operations available on 32-bit atomics are also provided in 
their 64-bit form.

▸ atomic64_t IS NOT PORTABLE

･ Because this, it’s mostly used on architecture-specific code.

64-bit atomic operations
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▸ Atomic single-bit data manipulation

▸ Also architecture-specific

▸ Operations are performed on generic memory addresses

･ We simply pass to those operations a bit number and a 
memory address. (0 being the LSB).

▸ Linux provides a few functions to search for the first bit 
set/unset in a data type

･ find_first_bit() - find_first_zero_bit

Atomic bitwise operations
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▸ Atomic operations

▸ bitwise operations

▸ __ffs() and ffz()

Show time
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▸ Allocation

･ DEFINE_PER_CPU(), DECLARE_PER_CPU() - compile time

･ alloc_percpu(), __aloc_percpu, free_percpu() - runtime

▸ Access the variables:

･ get_gpu_var(),put_cpu_var() - Also disable/enable preemption

▸ Accessing other CPU’s data:

･ per_cpu() - This doesn’t handle preemption enable/disable

･ By accessing another CPU’s data, synchronization is still required

Per-CPU APIs
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When simplicity is 
not enough…
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▸ Most common lock used in Linux

▸ Can be held by a SINGLE thread of execution

▸ A thread attempting to acquire an already contended lock will 
“spin” waiting the lock to become available.

･ This consumes CPU time so, shouldn’t be held for too long.

▸ Only locking mechanism allowed in interrupt context

▸ Architecture and SMP dependent

▸ Provide “special APIs for interrupt context” - irqsave/irqrestore

SpinLocks
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▸ Lock acquisition can be split into Readers and Writers

▸ Reading doesn’t require mutual exclusion

▸ Splitting  the usage of data structures between reader and writer 
paths (producer/consumer), we allow concurrent read access.

▸ Readers can’t be upgraded

▸ RW spinlocks favor readers over writers

･ Be careful to not starve the writers

Read-Writer spinlocks
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▸ “Sleeping locks” - Once a task attempts to acquire an already 
locked semaphore, the task is put to sleep on a wait queue

▸ When the lock is released, the next task in the list will be awaken 
and then will grab the lock.

▸ Better CPU utilization

▸ Better suited for locks held for long periods of time

▸ Can’t be used in interrupt context

Semaphores
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▸ Semaphores also provide a reader-writer version

▸ RW semaphores are ALWAYS mutual exclusion writers.

･ Only a single writer at a time

･ But can have multiple readers.

▸ RW semaphores only allow waiters to be in 
UNINTERRUPTIBLE_SLEEP

▸ As with RW spinlocks, if you have no clear separation between 
read and write paths, don’t use them

Reader-writer semaphores
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▸ Provides mutual exclusion and works similarly to a binary 
semaphore

▸ Provides a simpler interface and less overhead

▸ Impose several constraints on its usage, making it simple to use

･ Only one task can hold a mutex at a time

･ Mutexes must be locked/unlocked in the same context

･ This is one specific usage for semaphores

･ Not allowed in interrupt context either

▸ Mutexes must be managed only through the APIs.

Mutexes
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▸ Mutexes have a special debugging mode

･ Big help to look for constraints violations

▸ Semaphore vs. Mutexes

･ Similar, but mutexes are faster and with less overhead

･ Mutexes are simpler to use, so prefer them in lieu of 
semaphores.

･ Unless one of its constraints prevents you from using 
it.

▸ Spinlocks vs Mutexes - same semaphores rules applies

Mutexes #2



Optional section marker

49

▸ Easy way to synchronize two tasks within kernel when:

･ one task needs to signal another that an event occurred.

▸ One task waits for the completion variable while another does 
some work.

･ Once the work is completed, the task uses the completion 
variable to wake up the waiting task(s)

▸ Similar to semaphores, but provides a simpler solution to the 
same problem.

Completion variables
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▸ Mechanism to read and write shared data

▸ Lockless readers

･ If inconsistency is found, the reader should retry reading 
the data

▸ Works great for data that is rarely written

▸ It works by maintaining a sequence counter, updated when the 
data in question is written to

Sequential locks
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▸ Increment the sequence counter at the start and end of the 
critical section.

･ After starting the critical section, the seqcount is odd, 
indicating to readers there is an update in progress

･ Once the write is finished, the seqcount becomes even 
again, letting readers know no more write is happening.

Sequential locks - Writers
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▸ The sequence number is read before any attempt to read the 
data

･ If the seqcount is odd, the reader knows no write is 
happening.

▸ The reader must make a copy of the data to somewhere outside 
the critical section.

▸ At the end, the reader must read the seqcount again, and 
compare with the initial value. 

･ If the count is the same, we know that the data is 
consistent.

･ If not, we need to retry the read

Sequential locks - Readers
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▸ While readers are lockless, the same isn’t true for writers.

･ We must protect against multiple writers somehow

･ The writers must also be non-preemptible

▸ The seqlock api provides a few mechanisms to make this easier.

▸ seqlocks can be used in irq contexts, as long we properly handle 
interrupts and preemption disabling, and use the correct locks 
to protect against mutual writers.

Sequential locks - serialization
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▸ Seq locks provide a scalable and lightweight lock mechanism for 
scenarios with read-most data.

▸ Writers are prioritized, so we must ensure we have few of them, 
otherwise, readers will keep retrying indefinitely.

Sequential locks - conclusion
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▸ As we’ve seen, kernel code is preemptive

･ A task in kernel space can stop running any time in lieu of a 
higher priority kernel task.

･ This new task, can actually access the same critical section 
being accessed by the preempted task.

▸ Spinlocks already solve this problem as they mark such regions 
non-preemptive.

･ So, why we need mechanisms to explicitly disable 
preemption?

Preemption
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▸ Some situations require no locks, and spinlocks would add 
unneeded overhead.

▸ per-CPU data for example

･ Can be accessed only by a single CPU, so, no lock is needed.

･ But a task can be preempted and another scheduled on the 
same cpu

▸ We solve this problem by simply disabling preemption on that 
CPU

▸ Preemptions can be nested.

Preemption #2
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Read-Copy-Update
or simply
RCU
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▸ Yet another synchronization mechanism

▸ But it IS NOT a locking mechanism

･ No locks, no counters… Lock free..

▸ Many readers and many writers are allowed to proceed 
concurrently

▸ RCUs maintain multiple ‘versions’  of the data, and guarantee 
they are not freed until all readers are done.

▸ But how???

What is the RCU mechanism?
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▸ Reader implementation is really simple

･ No need to acquire any locks

･ No atomic instructions needed

･ No shared memory writes needed

▸ By not needing any of these expensive operations, RCU is 
extremely fast on read-mostly scenarios

▸ No locks == No deadlocks (but you can still have live lock 
scenarios)

RCU reader side
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▸ As with spinlocks:

･ RCU readers can’t block

･ They can’t context switch

▸ Only dynamically allocated data can be protected

･ RCU works on the data address pointers

RCU reader constraints
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▸ When a task wants to update RCU protected data, it must:

･ Read the data

･ Make a copy of the data

･ Update the data pointer to point to this new updated 
version

RCU writer side
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▸ Writers still need to synchronize with each other somehow

･ Like using atomic operations, barriers, spinlocks(), etc

･ The data pointers update still must be atomic

▸ Enforcing memory access order is still required

･ We must ensure the new pointers are seen only the data 
has been modified

RCU writer side #2



Optional section marker

63

▸ We are not done yet:

･ Old data, may still be being referenced

･ We must free the old data at some point

･ And here comes the beauty of RCUs

RCU writer side #3
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▸ According to RCU constraints, all readers must “unlock” the data 
before any context switch

･ no blocking, no user-mode switch, no idle loop

▸ So, we know that:

･ Once a CPU has gone through a quiescent state, that 
specific CPU is no longer within the RCU protected region.

▸ Once all CPUs have gone through a quiescent state, the old data 
can safely be freed.

Tracking usage and freeing old data
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▸ Lockless iteration over system’s processes

･ task_struct->tasks field is used to link all the processes

･ can be traversed in parallel to any updates to the list

RCU usage example

rcu_read_lock();

for_each_process(p) {

/* do something with p */

}

rcu_read_unlock();

write_lock(&tasklist_lock);

list_del_rcu(&p->tasks);

write_unlock(&tasklist_lock);

call_rcu(&p->rcu, delayed_put_task_struct);
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▸ The time between the pointer to a data object is replaced, and 
the stale data is freed, is called the “grace period”

▸ The writers call to call_rcu() function which queue a RCU callback 
for invocation when this grace period expires

･ We can synchronously free some data, by explicitly waiting 
for a grace period to expire, with synchronize_rcu() which 
end up calling call_rcu().

▸ The RCU mechanism is responsible for controlling the grace 
periods, and it does so by polling the CPUs

RCU’s grace period
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What next?
Lockdep, 
Preemptible RCUs,
RT-kernel



linkedin.com/company/red-hat

youtube.com/user/RedHatVideos

facebook.com/redhatinc

twitter.com/RedHat
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Red Hat is the world’s leading provider of 
enterprise open source software solutions. 
Award-winning support, training, and 
consulting services make 
Red Hat a trusted adviser to the Fortune 500. 

Thank you
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