
Synchronization
primitives

1

Agenda

2

Overview ▸ What is concurrency?
▸ Race conditions and deadlocks
▸ Synchronization mechanisms on Linux
▸ When to use them
▸ When NOT to use them

3

Introduction to
synchronization

Optional section marker

4

▸ Programming was easier

･ Computers had a single CPU and a single thread of
execution

･ There was a single program running at a time

▸ We have a complete different scenario now

･ Hundreds of CPUs, cores (or both)

･ CPUs able to run different instructions simultaneously

･ OS’es juggling thousands of processes/threads and users at
the same time.

Context: Early days of Computing

5

Kernel perspective

Optional section marker

6

▸ Kernel code can also be executed concurrently

･ Even within the same CPU. Concurrency can happen with a
single CPU.

▸ Different levels of concurrency within the kernel which may
contain critical sections

･ Interrupt context

･ Preemption

･ Shared Resources

Concurrency within the kernel

7

What should be
protected against
concurrent access?

Optional section marker

8

https://kernelnewbies.org/BigKernelLock

▸ Always keep that in mind…

･ Locks must be used to protect data structure from
concurrent access, not to protect your code.

▸ Look at a data structure and think what should be protected
there.

▸ Code-centered locking design always end up in disasters
sometime in the future.

･ Search for how long it took to get rid of kernel’s BKL

Locks exist to protect data, not code

Optional section marker

9

▸ Any data that can be accessed by more than one thread

･ Keep in mind that even a single CPU can concurrently
access the same code (thanks to preemption and
interrupts)

▸ Ask yourself

･ If the code sleeps while accessing data, can the new
scheduled code access the same data?

･ If the code gets interrupted by an IRQ… Can the IRQ
handler access the very same data?

Concurrency within the kernel

10

Race conditions

Optional section marker

11

▸ Caused when two or more threads concurrently access the same
data structure and at least one is modifying it.

▸ Race conditions might be extremely difficult to find

▸ They are hard to reproduce, as they are time dependent.

･ More often than not, adding instrumentation will hide the
bug

The most annoying of all bugs

Optional section marker

12

▸ A single integer variable accessed by more than one thread

･ 1 Thread increments the variable

･ 1 Thread reads the variable

▸ This is pretty simple… But what could go wrong?

Case study 1

Optional section marker

13

int a=0;
a++;

Case study 1 (cont.)

 mov addr, reg

 add $1, reg

 mov reg, addr

Optional section marker

14

▸ A real race condition within tmpfs quota code

Case study 2

15

Deadlocks

Optional section marker

16

▸ One or more threads attempt to lock a specific resource that is
already held

･ For some reason (that we shall see), this held resource can
never be released by the current holder.

･ The waiting thread will never make progress

What are deadlocks?

Optional section marker

17

▸ Four conditions must be met so a deadlock may occur

･ Mutual exclusion

･ Hold and wait

･ No preemption

･ Circular wait

Deadlock conditions

Optional section marker

18

▸ Self-deadlock

▸ ABBA deadlock

･ Lock inversion

Common deadlocks

Optional section marker

19

▸ Eliminate one of the four conditions previously

▸ Strict lock ordering

▸ Ensure the lock is released at some point

･ Will the code, holding this lock, ever finish?

･ Can it wait forever?

▸ Don’t double acquire locks (kernel doesn’t allow that anyway)

･ Lock recursion is not allowed in Linux kernel

▸ Simplicity by design

How do we prevent deadlocks?

20

Lock contention

Optional section marker

21

▸ Serialization caused by locking, may have a significant impact on
performance.

▸ Consider lock “granularity”

･ How much data does a specific lock protect?

･ Coarse locks VS. Fine grained locks

Resources serialization

Optional section marker

22

▸ task_struct

･ What would happen if the whole task_struct was protected
by a single lock?

･ How many locks are used within the task struct?

task_struct as example

Optional section marker

23

▸ Fine grained locking reduces contention, but…

･ It does also add a lot of overhead.

･ Adds complexity

▸ Consider what kind of system that software will run.

▸ Extra locking overhead may kill small systems performance

Careless scalability

24

Instruction
ordering and
memory barriers

Optional section marker

25

▸ Compilers and processors are free to reorder instructions

･ Including load and store memory instructions

▸ Because sometimes instructions order are important, we must
be able to control it.

･ We must be able to guarantee that a specific read happens
before another, or

･ That a write appears before any subsequent read

▸ Compilers and CPUs able to reorder operations, provide machine
instructions to enforce ordering requirements, aka barriers

Instruction ordering

Optional section marker

26

▸ Let’s get a couple instructions:

a=1;

b=2;

▸ Nothing prevents the compiler or the CPU to process the second
instruction first.

･ Compiler may statically reorder it within the object code

･ The CPU however, could dynamically reorder it by fetching
and dispatching them in different order.

Ordering example

Optional section marker

27

▸ When there is no clear relationship between both instructions.

▸ These instructions would not be reordered:

･ a = 1;

･ b = a;

▸ The compiler and the CPU though, doesn’t know about the code
in different contexts.

▸ It’s our job to tell both about the specific ordering.

When reordering may happen

Optional section marker

28

▸ Memory barriers and compiler directives are architecture
dependent

･ Intel as example, never performs out-of-order store
operations.

▸ We must not make any assumptions on which hardware our
code will be running.

･ Unless of course, you are writing architecture-specific code.

▸ But…. There is yet another problem…

Architecture dependency, yet again

Optional section marker

29

▸ The following code:

while (tmp = a)

 call_function(tmp);

▸ If the compiler can prove the variable ‘a’ is always zero, it may optimize
to:

do {} while (0);

▸ Giving the compiler is not context aware.

･ What would happen if ‘‘a’ variable is shared and is actually updated
from a different context?

Compiler optimizations

Optional section marker

30

▸ If you are lucky, you will likely spend hours trying to understand why the
kernel is crashing.

･ If you are not, you’ll spend months trying to understand why it is
misbehaving once in a while.

▸ And in such cases, we must explicitly tell the compiler that it should read
variable ‘a’ every loop interaction.

Compiler optimizations #2

Optional section marker

31

▸ Be aware not only of how the CPUs will execute the code, but also

▸ How the compiler will treat such code.

･ Which optimizations it may do to the code and what consequences
it will have.

▸ This is a place where learning ASM really pay dividends

･ Understanding how the generated assembly relates to the code
you wrote is a great way to spot any unwanted optimizations.

What to take away from all of this?

32

Synchronization
within Linux

Optional section marker

33

▸ Macros used to manipulate CPU memory barriers (Run-time barriers)

･ rmb() - Read memory barrier

･ wmb() - Write memory barrier

･ mb() - RW memory barrier

▸ These macros guarantee ordering of load/store instructions

･ Any load/store instruction coded before the barrier, will be
executed before any instruction coded after the barrier.

CPU memory barriers

Optional section marker

34

▸ barrier()

･ Explicitly tell the compiler to not move memory accesses across the
barrier, enforcing memory access ordering.

▸ READ_ONCE() and WRITE_ONCE()

･ It tells the compiler it must re-read/re-write the variable each time
it is called.

･ while (tmp = READ_ONCE(a)) { do_something(tmp) };

▸ Please don’t use volatile type class (with some rare exceptions)

･ It is rarely acceptable in Linux kernel and its use is almost never
correct.

Compiler barriers

https://www.kernel.org/doc/html/latest/process/volatile-considered-harmful.html

Optional section marker

35

▸ A collection of instructions that execute atomically

▸ Architecture specific implementation

▸ Linux provides two types of atomic operations

･ Integer-based

･ Bitwise

▸ Linux provides a special data type for atomic operations

･ atomic_t

Atomic operations

Optional section marker

36

▸ Fastest synchronization method, introducing no overhead
compared to locking.

▸ No need to implement locking to protect small portions of data,
like integers or single-bit changes

▸ Many locking primitives end up relying on atomic operations

▸ Usually are implemented as inline functions with inline
assembly.

▸ It’s a no-brainer for some architectures

Atomic operations #2

Optional section marker

37

▸ Having a specific type guarantees type check, so atomic
functions only accept atomic_t types.

▸ Prevents somebody using atomic data types with non-atomic
functions.

▸ The atomic_t, prevents the compiler to do some ‘clever
optimizations’ on these types.

▸ Prevent ourselves to use atomic types on non atomic operations

･ atomic_t VAR = 10;

atomic_t data type

Optional section marker

38

▸ atomic_t variables are ALWAYS 32 bits

▸ Another type - atomic64_t can be used for 64-bit atomic
operations

▸ Most operations available on 32-bit atomics are also provided in
their 64-bit form.

▸ atomic64_t IS NOT PORTABLE

･ Because this, it’s mostly used on architecture-specific code.

64-bit atomic operations

Optional section marker

39

▸ Atomic single-bit data manipulation

▸ Also architecture-specific

▸ Operations are performed on generic memory addresses

･ We simply pass to those operations a bit number and a
memory address. (0 being the LSB).

▸ Linux provides a few functions to search for the first bit
set/unset in a data type

･ find_first_bit() - find_first_zero_bit

Atomic bitwise operations

Optional section marker

40

▸ Atomic operations

▸ bitwise operations

▸ __ffs() and ffz()

Show time

Optional section marker

41

▸ Allocation

･ DEFINE_PER_CPU(), DECLARE_PER_CPU() - compile time

･ alloc_percpu(), __aloc_percpu, free_percpu() - runtime

▸ Access the variables:

･ get_gpu_var(),put_cpu_var() - Also disable/enable preemption

▸ Accessing other CPU’s data:

･ per_cpu() - This doesn’t handle preemption enable/disable

･ By accessing another CPU’s data, synchronization is still required

Per-CPU APIs

42

When simplicity is
not enough…

Optional section marker

43

▸ Most common lock used in Linux

▸ Can be held by a SINGLE thread of execution

▸ A thread attempting to acquire an already contended lock will
“spin” waiting the lock to become available.

･ This consumes CPU time so, shouldn’t be held for too long.

▸ Only locking mechanism allowed in interrupt context

▸ Architecture and SMP dependent

▸ Provide “special APIs for interrupt context” - irqsave/irqrestore

SpinLocks

Optional section marker

44

▸ Lock acquisition can be split into Readers and Writers

▸ Reading doesn’t require mutual exclusion

▸ Splitting the usage of data structures between reader and writer
paths (producer/consumer), we allow concurrent read access.

▸ Readers can’t be upgraded

▸ RW spinlocks favor readers over writers

･ Be careful to not starve the writers

Read-Writer spinlocks

Optional section marker

45

▸ “Sleeping locks” - Once a task attempts to acquire an already
locked semaphore, the task is put to sleep on a wait queue

▸ When the lock is released, the next task in the list will be awaken
and then will grab the lock.

▸ Better CPU utilization

▸ Better suited for locks held for long periods of time

▸ Can’t be used in interrupt context

Semaphores

Optional section marker

46

▸ Semaphores also provide a reader-writer version

▸ RW semaphores are ALWAYS mutual exclusion writers.

･ Only a single writer at a time

･ But can have multiple readers.

▸ RW semaphores only allow waiters to be in
UNINTERRUPTIBLE_SLEEP

▸ As with RW spinlocks, if you have no clear separation between
read and write paths, don’t use them

Reader-writer semaphores

Optional section marker

47

▸ Provides mutual exclusion and works similarly to a binary
semaphore

▸ Provides a simpler interface and less overhead

▸ Impose several constraints on its usage, making it simple to use

･ Only one task can hold a mutex at a time

･ Mutexes must be locked/unlocked in the same context

･ This is one specific usage for semaphores

･ Not allowed in interrupt context either

▸ Mutexes must be managed only through the APIs.

Mutexes

Optional section marker

48

▸ Mutexes have a special debugging mode

･ Big help to look for constraints violations

▸ Semaphore vs. Mutexes

･ Similar, but mutexes are faster and with less overhead

･ Mutexes are simpler to use, so prefer them in lieu of
semaphores.

･ Unless one of its constraints prevents you from using
it.

▸ Spinlocks vs Mutexes - same semaphores rules applies

Mutexes #2

Optional section marker

49

▸ Easy way to synchronize two tasks within kernel when:

･ one task needs to signal another that an event occurred.

▸ One task waits for the completion variable while another does
some work.

･ Once the work is completed, the task uses the completion
variable to wake up the waiting task(s)

▸ Similar to semaphores, but provides a simpler solution to the
same problem.

Completion variables

Optional section marker

50

▸ Mechanism to read and write shared data

▸ Lockless readers

･ If inconsistency is found, the reader should retry reading
the data

▸ Works great for data that is rarely written

▸ It works by maintaining a sequence counter, updated when the
data in question is written to

Sequential locks

Optional section marker

51

▸ Increment the sequence counter at the start and end of the
critical section.

･ After starting the critical section, the seqcount is odd,
indicating to readers there is an update in progress

･ Once the write is finished, the seqcount becomes even
again, letting readers know no more write is happening.

Sequential locks - Writers

Optional section marker

52

▸ The sequence number is read before any attempt to read the
data

･ If the seqcount is odd, the reader knows no write is
happening.

▸ The reader must make a copy of the data to somewhere outside
the critical section.

▸ At the end, the reader must read the seqcount again, and
compare with the initial value.

･ If the count is the same, we know that the data is
consistent.

･ If not, we need to retry the read

Sequential locks - Readers

Optional section marker

53

▸ While readers are lockless, the same isn’t true for writers.

･ We must protect against multiple writers somehow

･ The writers must also be non-preemptible

▸ The seqlock api provides a few mechanisms to make this easier.

▸ seqlocks can be used in irq contexts, as long we properly handle
interrupts and preemption disabling, and use the correct locks
to protect against mutual writers.

Sequential locks - serialization

Optional section marker

54

▸ Seq locks provide a scalable and lightweight lock mechanism for
scenarios with read-most data.

▸ Writers are prioritized, so we must ensure we have few of them,
otherwise, readers will keep retrying indefinitely.

Sequential locks - conclusion

Optional section marker

55

▸ As we’ve seen, kernel code is preemptive

･ A task in kernel space can stop running any time in lieu of a
higher priority kernel task.

･ This new task, can actually access the same critical section
being accessed by the preempted task.

▸ Spinlocks already solve this problem as they mark such regions
non-preemptive.

･ So, why we need mechanisms to explicitly disable
preemption?

Preemption

Optional section marker

56

▸ Some situations require no locks, and spinlocks would add
unneeded overhead.

▸ per-CPU data for example

･ Can be accessed only by a single CPU, so, no lock is needed.

･ But a task can be preempted and another scheduled on the
same cpu

▸ We solve this problem by simply disabling preemption on that
CPU

▸ Preemptions can be nested.

Preemption #2

57

Read-Copy-Update
or simply
RCU

Optional section marker

58

▸ Yet another synchronization mechanism

▸ But it IS NOT a locking mechanism

･ No locks, no counters… Lock free..

▸ Many readers and many writers are allowed to proceed
concurrently

▸ RCUs maintain multiple ‘versions’ of the data, and guarantee
they are not freed until all readers are done.

▸ But how???

What is the RCU mechanism?

Optional section marker

59

▸ Reader implementation is really simple

･ No need to acquire any locks

･ No atomic instructions needed

･ No shared memory writes needed

▸ By not needing any of these expensive operations, RCU is
extremely fast on read-mostly scenarios

▸ No locks == No deadlocks (but you can still have live lock
scenarios)

RCU reader side

Optional section marker

60

▸ As with spinlocks:

･ RCU readers can’t block

･ They can’t context switch

▸ Only dynamically allocated data can be protected

･ RCU works on the data address pointers

RCU reader constraints

Optional section marker

61

▸ When a task wants to update RCU protected data, it must:

･ Read the data

･ Make a copy of the data

･ Update the data pointer to point to this new updated
version

RCU writer side

Optional section marker

62

▸ Writers still need to synchronize with each other somehow

･ Like using atomic operations, barriers, spinlocks(), etc

･ The data pointers update still must be atomic

▸ Enforcing memory access order is still required

･ We must ensure the new pointers are seen only the data
has been modified

RCU writer side #2

Optional section marker

63

▸ We are not done yet:

･ Old data, may still be being referenced

･ We must free the old data at some point

･ And here comes the beauty of RCUs

RCU writer side #3

Optional section marker

64

▸ According to RCU constraints, all readers must “unlock” the data
before any context switch

･ no blocking, no user-mode switch, no idle loop

▸ So, we know that:

･ Once a CPU has gone through a quiescent state, that
specific CPU is no longer within the RCU protected region.

▸ Once all CPUs have gone through a quiescent state, the old data
can safely be freed.

Tracking usage and freeing old data

Optional section marker

65

▸ Lockless iteration over system’s processes

･ task_struct->tasks field is used to link all the processes

･ can be traversed in parallel to any updates to the list

RCU usage example

rcu_read_lock();

for_each_process(p) {

/* do something with p */

}

rcu_read_unlock();

write_lock(&tasklist_lock);

list_del_rcu(&p->tasks);

write_unlock(&tasklist_lock);

call_rcu(&p->rcu, delayed_put_task_struct);

Optional section marker

66

▸ The time between the pointer to a data object is replaced, and
the stale data is freed, is called the “grace period”

▸ The writers call to call_rcu() function which queue a RCU callback
for invocation when this grace period expires

･ We can synchronously free some data, by explicitly waiting
for a grace period to expire, with synchronize_rcu() which
end up calling call_rcu().

▸ The RCU mechanism is responsible for controlling the grace
periods, and it does so by polling the CPUs

RCU’s grace period

67

What next?
Lockdep,
Preemptible RCUs,
RT-kernel

linkedin.com/company/red-hat

youtube.com/user/RedHatVideos

facebook.com/redhatinc

twitter.com/RedHat

68

Red Hat is the world’s leading provider of
enterprise open source software solutions.
Award-winning support, training, and
consulting services make
Red Hat a trusted adviser to the Fortune 500.

Thank you

	Synchronization primitives
	Slide 2
	Introduction to synchronization
	Context: Early days of Computing
	Kernel perspective
	Concurrency within the kernel
	What should be protected against concurrent access?
	Locks exist to protect data, not code
	Concurrency within the kernel
	Race conditions
	The most annoying of all bugs
	Case study 1
	Case study 1 (cont.)
	Case study 2
	Deadlocks
	What are deadlocks?
	Deadlock conditions
	Common deadlocks
	How do we prevent deadlocks?
	Lock contention
	Resources serialization
	task_struct as example
	Careless scalability
	Instruction ordering and memory barriers
	Instruction ordering
	Ordering example
	When reordering may happen
	Architecture dependency, yet again
	Compiler optimizations
	Compiler optimizations #2
	What to take away from all of this?
	Synchronization within Linux
	CPU memory barriers
	Compiler barriers
	Atomic operations
	Atomic operations #2
	atomic_t data type
	64-bit atomic operations
	Atomic bitwise operations
	Show time
	Per-CPU APIs
	When simplicity is not enough…
	SpinLocks
	Read-Writer spinlocks
	Semaphores
	Reader-writer semaphores
	Mutexes
	Mutexes #2
	Completion variables
	Sequential locks
	Sequential locks - Writers
	Sequential locks - Readers
	Sequential locks - serialization
	Sequential locks - conclusion
	Preemption
	Preemption #2
	Read-Copy-Update or simply RCU
	What is the RCU mechanism?
	RCU reader side
	RCU reader constraints
	RCU writer side
	RCU writer side #2
	RCU writer side #3
	Tracking usage and freeing old data
	RCU usage example
	RCU’s grace period
	What next? Lockdep, Preemptible RCUs, RT-kernel
	Thank you

