
Version number here V00000

Memory Management
Subsystem

1

Agenda

2

Overview ▸ Introduction to virtual memory, paging,
page tables and address space

▸ Linux memory layout
▸ Memory slabs
▸ Memory allocation and management
▸ Memory API
▸ GFP flags

Version number here V00000

3

Early days of memory
management

Optional section marker

4

▸ No multi-user or multi-programming computers

･ We could only have a single program running at a time

▸ Sometimes no OS was used

▸ Early days OS’es were just a small collection of libraries for
common hardware access

No need for memory management

Optional section marker

5

▸ New computers brought more resources

･ faster CPUs

･ bigger amounts of memory

▸ Running a single program at a time became a waste of power, so
we reached a new era.

･ Multi-programs

･ Multi-user

･ Multi-problems

Better computers = New problems

Optional section marker

6

▸ How to load many programs into memory at the same time and:

･ Programs don’t need to be loaded on different addresses

･ They can’t access each other memory areas

･ Programs can’t monopolize the whole physical memory,
starving other programs.

▸ Virtual memory comes for the rescue

New era problems

Version number here V00000

7

Virtual memory

Optional section marker

8

▸ Memory management technique where the OS (with hardware
support) enables the system memory to be shared between
programs

･ Simplify the memory addressing for processes

･ Allow full isolation of memory between running programs

･ Memory allocated on-demand

Virtual memory concepts

Optional section marker

9

▸ Transparency and illusion - it literally fools programs

･ An individual Address Space for each program.

▸ And this is how a program “sees” memory…

New abstractions

Optional section marker

10

Address Space

Version number here V00000

11

Memory addressing
and
address translation

Optional section marker

12

▸ A “memory address” may have different meanings:

･ The Logical address

･ Generated using memory segments

･ The linear address

･ The virtual address

･ The Physical address

･ Address of memory cells in chips

The three memory addresses

Optional section marker

13

▸ Addresses generated by programs are virtual addresses

▸ Physical <-> memory translation

･ Hardware’s low-level circuitry make the translations more
efficient.

･ every fetch/load/store causes an address translation

･ OS is responsible for managing it (control free/used
memory, access, etc)

･ MMU transforms physical into linear addresses

Address translation

Version number here V00000

14

Paging

Optional section marker

15

▸ Physical memory is split into fixed-sized “slots” named:

･ Page Frames

▸ Processes address space are now divided in pages and not in
segments

▸ A page IS NOT a page frame

･ Page = Chunk of data

･ Page frame = Physical “slot” within the machine’s memory

Memory paging

Page vs Frame

16

Optional section marker

17

▸ Pages are easier to manage

▸ Results in less fragmentation

▸ Memory usage is tracked through a “Page Table”

▸ Entries in the page table are called Page Table Entry (or PTE)

Memory paging #2

Optional section marker

18

▸ Indexes all the pages used in the system

▸ Stores and indexes several PTEs

▸ Each PTE contains the needed information to perform an
address translation Physical <-> Virtual

▸ Page tables are “per process” data structures

･ Paging is slow - TLB for the rescue

･ Different architectures and OSes implement it in different
ways

Page Tables

Optional section marker

19

▸ We could implement a simple page table in a Linear way (using
x86 32-bit as example), where given an address:

･ Bits: 12-31 -> describe the page index

･ Bits: 0 11 -> Offset within the page

▸ This is really simple, but has a big issue:

･ Having PTEs of 4 bytes each, would required 4MiB ram for
each process in the system

･ This is too much memory just for memory management

Page Tables implementation

Optional section marker

20

▸ Preventing excessive memory consumption can be reached by

･ Employing a multi-level page table

▸ On 32-bit systems, the linear address space is split into 3 levels:

･ Page Directory (10 MSB)

･ Page table Entry (next 10 bits)

･ Offset (the last 12 LSB)

Page Tables implementation #2

Optional section marker

21

Address translation using the page table

Optional section marker

22

▸ Not all pages within a virtual address space need to be mapped
to a physical page

･ Processes usually don’t have the whole address space
allocated

▸ An attempt to access a not yet mapped virtual address, will
cause the CPU to raise a “Page Fault” exception, passing the
control back to the operating system.

･ The OS will then map that page table

▸ The MMU does play a big role here, but we won’t dive into
hardware details

Multi-level paging details

Version number here V00000

23

CPU caches
Reducing thrashing ,
and false sharing

24

Basics of CPU caching workflow

CPU Core

L1 Cache

L2 Cache

L3 Cache

Single
cachelines

RAM

0 1

Cachelines are
usually 64 bytes

in size

Cache coherence
protocols ensure CPU

caches are synchronized.

Version number here V00000

25

Linux kernel’s
memory
management

Optional section marker

26

▸ Memory allocation within a kernel is a different beast when
compared with user-space.

･ Allocating memory isn’t always easy, specially on
embedded systems where memory is short

･ Kernel often can’t sleep.

▸ We shall see how it works

Handling memory within kernel

Optional section marker

27

▸ Quick recap

･ Memory is handled by the machine and kernel itself using
MMU when available to maintain the page tables and
handle address translation

･ Page size is architecture dependent

▸ Every physical page is represented by a page data structure

･ struct page goal is to describe the physical memory not
the data within it.

Linux Paging

Optional section marker

28

▸ Linux defines page tables as a hierarchy (multi-level page tables)

▸ The code for the specific architectures will map this hierarchy to
the hardware restrictions.

▸ The number of levels in the page table varies depending on the
architecture

▸ Top-level address is stored in a CPU register

Linux Page Tables

Optional section marker

29

▸ PGD -> P4D -> PUD -> PMD -> PTE

･ P4D was introduced to handle 5-level tables, only used with
5 levels, otherwise, it’s folded

Linux Page Table diagram

Version number here V00000

30

Process Address
Space

Optional section marker

31

▸ Memory region used by each process

▸ It can (and usually is) way larger than available physical memory

▸ Consists of:

･ Virtual memory addressable by a process

･ Addresses within the virtual memory the process is allowed to
use

Process address space

Optional section marker

32

▸ Flat address space given to a process

▸ Architecture dependent

▸ Processes see the same addresses, but the address space is unique for
each process

▸ Address spaces can be shared among process (Threads)

▸ The process does no have access to all addresses within the address
space

Process address space #2

Optional section marker

33

▸ Address spaces are split into memory areas that can be
dynamically added/removed (With kernel’s help)

▸ Memory areas have their own associated permissions (R, W, X)

▸ Don’t respect the permissions and you get a Segmentation fault

Process address space #3

Optional section marker

34

▸ mm_struct - represents a process’s address space

▸ Linked to the process’s task_struct via current->mm field

address space descriptor (aka Memory descriptor)

Optional section marker

35

▸ Kernel Thread definition:

･ A process without user context

▸ kernel threads have no process address space

･ No associated memory descriptor ->mm field is NULL

▸ No userspace pages, so, no page tables.

▸ So, without page tables, without a memory descriptor…

･ How kthreads deal with memory then?

Kernel threads address space

Optional section marker

36

▸ They “borrow” the memory descriptor of whatever task ran
before it.

▸ A process is scheduled…

･ The address space referenced by the ->mm field is loaded

･ The active_mm field is updated to this new address space

Kernel threads address space #2

Optional section marker

37

▸ A kthread is scheduled…

･ The kernel sees the NULL ->mm field, and keeps the
previous address space still loaded.

･ The ->active_mm field of the kthread’s process descriptor is
updated to refer to the same address space of the previous
process (currently loaded).

▸ The kthread can use the previous process page tables as
needed.

▸ Kthreads never access userspace pages AND all address space
information related to kernel memory, is the same for all
processes.

Kernel threads address space #3

Optional section marker

38

▸ vm_area_struct descriptor

▸ Represent individual memory areas within the Address Space

▸ Each memory area has its own properties

･ Permissions, associated operations…

▸ Each VM can represent different types of memory areas

･ mmapped files, user-space stack…

Virtual Memory Areas (VMAs)

Optional section marker

39

Virtual memory areas #2

Shared Libraries

Data

mm pgd

mmap

Text

vm_end
vm_start
vm_prot
vm_flags

vm_end
vm_start
vm_prot
vm_flags

vm_end
vm_start
vm_prot
vm_flags

task_struct mm_struct vm_area_struct Process Virtual
Memory

Optional section marker

40

▸ VMAs are unique for the associated mm_struct

･ Each process has its own individual address space

･ We could have two processes mapping the same file in
their address spaces, and yet, each one will have an unique
vm_area_struct for that file map

▸ Threads sharing the same address space will also share the
same VMA regions.

Virtual memory areas (aka VMAs) #3

Optional section marker

41

▸ Each VMA have its own permissions and purpose

▸ vm_page_prot and vm_flags configure such permissions

▸ Some of these settings are directly influenced by system calls
such as madvise()

Virtual memory areas (aka VMAs) #4

Optional section marker

42

▸ Similar as filesystems behavior depends on the internal
filesystem implementation

▸ VMAs operations also can be customized depending on what is
mapped on such memory region

▸ Filesystems set specific vma operations to deal with mmapped
files, so the kernel know what to do in situations such as

･ Page faults, page mapping, write specific page frames

▸ Not mandatory, and the VFS provide some generic functions

VMA Operations

Optional section marker

43

▸ New VMAs are allocated through do_mmap()

･ This is not (totally) related to mmap() syscall

▸ Possibly, it can simply merge the new request into an existing
area

VMA Allocation

Version number here V00000

44

Memory zones

Optional section marker

45

▸ Hardware limitation may prevent some pages at some addresses
to be accessed.

･ Some devices can only perform DMA at certain addresses

･ Some architectures can physically access more memory
than they can virtually address (x86_32 for example)

▸ Zones are a “logical” layout - hardware itself knows nothing
about it.

▸ Memory allocation is not restricted - Linux can fulfill requests
from different zones at any time, depending on memory usage.

▸ Zones are not used for every architecture

Linux divide memory in different zones

Optional section marker

46
Referenced in include/linux/mmzone.h

▸ DMA

▸ Normal

▸ High Mem

Memory zones

Version number here V00000

47

Linux’s memory
management APIs

Version number here V00000

48

Page allocation

Optional section marker

49

▸ Physical pages within kernel can be directly allocated using the
following mechanisms

･ alloc_page(), alloc_pages()

･ page_address()

･ __get_free_page(), __get_free_pages(), __get_zeroed_page()

･ __free_pages(), free_pages(), free_page()

Allocating physical pages

Optional section marker

50

▸ Pages are always allocated in page-size aligned granularity.

･ E.g - x86 architecture uses multiples of 4096 Bytes

▸ Allocated pages must be freed once you are done with them.

▸ Differently from user-space, the Kernel trusts itself, therefore:

･ There are no memory protection mechanisms

･ Kernel will happily let you free pages you didn’t allocate
yourself

･ So, make sure you are freeing the right page(s)

Allocating physical pages #2

Version number here V00000

51

General (byte-sized)
memory allocation
APIs

Optional section marker

52

▸ Most of the time, we don’t need to deal with physical pages directly

▸ So, the kernel provides a few ways to virtually allocate memory in byte-
size chunks

･ Those mechanisms still manipulate physical pages under the hood
though.

Generic memory allocation

Optional section marker

53

▸ Can be used to allocate a virtual memory region with a byte-size
granularity

▸ Most flexible way to allocate memory within the kernel, because

･ Allocated regions are only virtually contiguous

･ There is no guarantee it will be physically contiguous too.

▸ Usually, only hardware devices require physically contiguous memory

vmalloc() - vfree()

Optional section marker

54

▸ Because vmalloc()’ed memory is only virtually contiguous:

･ It requires the allocator to setup page tables, thich results in TLB
thrashing, so

･ vmalloc() is more expensive, might not be a good option when
performance is a must.

▸ On the other hand, with memory fragmentation, large contiguous regions
of memory becomes rare, so vmalloc() is a good alternative for large
chunks of data

▸ As any memory, vmalloc()’ed memory should also be freed

vmalloc() - vfree() #2

Version number here V00000

55

SLAB caches

Optional section marker

56

▸ Up until Linux 6.8, we had three different implementations of the SLAB
cache.

･ SLAB, SLOB and SLUB

▸ Everything but SLUB got removed from Linux in 6.8

▸ Now we have a single implementation of the SLAB cache, using the SLUB
implementation.

▸ DO NOT CONFUSE SLAB Cache with its SLUB implementation.

SLAB, SLOB, SLUB

Optional section marker

57

▸ Slabs are “pools” of pre-allocated memory regions of a specific size and/or
data type

▸ Whenever we need to allocate a new object, such object is already
allocated

･ We save time with memory allocation

▸ This is doable for example, by allocating many objects at once, and using
a list of free objects to track them down… So, why a generic layer?

･ The kernel memory allocator wouldn’t be aware of this list usage so
that it couldn’t fine control it.

･ We don’t need to keep reinventing the wheel

What are SLABs?

Optional section marker

58

▸ The Linux kernel provide a generic interface for that, known as SLAB
Cache

▸ The SLAB cache attempts to leverage a few principles:

･ Frequently used data structures tend to be allocated/freed often

･ Frequent alloc/dealloc results in memory fragmentation over time

･ Memory alloc/dealloc are costly operations

What are SLABs? #2

Optional section marker

59

▸ By using a generic layer, and centralizing memory allocation within the
slab layer, the kernel is aware of the usage of each slab cache, so it can:

･ Be aware of total cache and objects size

･ Shrink caches by freeing unused objects when needed (like a low-
memory scenario)

･ Create per-processor caches, so allocations can be performed
without a SMP lock

･ Stored objects can be configured to prevent multiple objects
mapping to the same cache lines

What are SLABs? #3

Optional section marker

60

▸ Inode structs

▸ task_struct structs

▸ Almost everything inside kernel, that doesn’t need to deal with physical
memory directly.

SLAB cache usage examples

Optional section marker

61

▸ Each cache is split into different “slabs”

▸ Each slab can be in three states:

･ full - partial - empty

▸ New allocation requests are attempted to be satisfied from a partially
filled slab (if one exists).

･ Fallback to an empty slab

･ Fallback to allocate a new slab and new objects within that slab

SLAB caches organization

Optional section marker

62

▸ slab cache drawing

SLAB caches organization

Version number here V00000

63

SLAB cache APIs

Optional section marker

64

▸ Creating a new slab cache:

･ kmem_cache_create() - kmem_cache_destroy()

･ Behavior can be controlled using some flags

▸ Allocating objects from a specific cache:

･ kmem_cache_alloc()/kmem_cache_zalloc() - kmem_cache_free()

Dealing with slab cache

Optional section marker

65

▸ The ‘default’ memory allocation mechanism for objects smaller
than PAGE SIZE

▸ Similar behavior to userspace malloc()/free() with a few
particularities

･ The flags parameter

･ The amount of memory that can be allocated, is limited.

･ Memory allocated is physically contiguous

kmalloc() - kfree()

Optional section marker

66

▸ The amount of memory kmalloc() can allocate is limited, usually
2*PAGE_SIZE

▸ kfree() - free the regions allocated by kmalloc()

･ Again, kernel will happily let you kfree() random regions of
memory.

▸ kmalloc() is actually a generic abstraction of the slab layer

･ Under the hood, kmalloc() actually works by allocating
‘generic objects’ in a slab cache

kmalloc() - kfree() #2

Optional section marker

67

▸ kmalloc() with a vmalloc() fallback

▸ It tries to allocate physically contiguous memory with kmalloc()

･ If it fails, it fallback to vmalloc() allocation

▸ Good alternative if you need memory at all costs and can for trade
performance.

･ And yet, it still can fail

▸ kvfree() - Free the memory region by type checking the kind of allocation
that has been done

kvmalloc() - kvfree()

Version number here V00000

68

GFP Flags

Optional section marker

69

▸ Allocating memory within the kernel is a bit more complicated

▸ Memory allocation might trigger unwanted or unexpected side-effects,
like

･ Generate disk I/O to reclaim memory

･ Generate filesystem operations

･ Allocated memory is in a different region and a device can’t access
it for DMA

▸ The memory allocator in Linux, can be controlled using the Get Free
Pages (GPF) flags

Controlling the memory allocator

Optional section marker

70

▸ GFP flags high-level categories

･ Zone modifiers - Zone selection

･ Mobility and placement flags - Reclaimable? Can it be
migrated?

･ Watermark modifiers - Emergency memory reserves

･ Reclaim modifiers - How kernel can reclaim memory if needed

･ Action modifiers - Use different behaviors

▸ There are dozen of GFP flags, but most of the time, we will be using
the same ones over and over

GFP flags

Version number here V00000

71

Linux Kernel’s stack

Optional section marker

72

▸ Different from user-space, the kernel doesn’t have the luxury of a
dynamically allocated stack.

▸ The Kernel stack is small and of a fixed size

･ Size is architecture dependent - Usually 2 * PAGE_SIZE

▸ Linux kernel make very little effort to manage kernel-space processes
stacks

･ Overflowing the stack will corrupt whatever data is beyond it
(starting with struct thread_info)

▸ KASAN has interesting options to debug stack overflows

Stack allocation within kernel

https://www.kernel.org/doc/html/next/x86/kernel-stacks.html

Linux kernel stack

73

Version number here V00000

linkedin.com/company/red-hat

youtube.com/user/RedHatVideos

facebook.com/redhatinc

twitter.com/RedHat

74

Red Hat is the world’s leading provider of
enterprise open source software solutions.
Award-winning support, training, and
consulting services make
Red Hat a trusted adviser to the Fortune 500.

Thank you

	Memory Management Subsystem
	Slide 2
	Early days of memory management
	No need for memory management
	Better computers = New problems
	New era problems
	Virtual memory
	Virtual memory concepts
	New abstractions
	Address Space
	Memory addressing and address translation
	The three memory addresses
	Address translation
	Paging
	Memory paging
	Page vs Frame
	Memory paging #2
	Page Tables
	Page Tables implementation
	Page Tables implementation #2
	Address translation using the page table
	Multi-level paging details
	CPU caches Reducing thrashing , and false sharing
	Basics of CPU caching workflow
	Linux kernel’s memory management
	Handling memory within kernel
	Linux Paging
	Linux Page Tables
	Linux Page Table diagram
	Process Address Space
	Process address space
	Process address space #2
	Process address space #3
	address space descriptor (aka Memory descriptor)
	Kernel threads address space
	Kernel threads address space #2
	Kernel threads address space #3
	Virtual Memory Areas (VMAs)
	Virtual memory areas #2
	Virtual memory areas (aka VMAs) #3
	Virtual memory areas (aka VMAs) #4
	VMA Operations
	VMA Allocation
	Memory zones
	Linux divide memory in different zones
	Memory zones
	Linux’s memory management APIs
	Page allocation
	Allocating physical pages
	Allocating physical pages #2
	General (byte-sized) memory allocation APIs
	Generic memory allocation
	vmalloc() - vfree()
	vmalloc() - vfree() #2
	SLAB caches
	SLAB, SLOB, SLUB
	What are SLABs?
	What are SLABs? #2
	What are SLABs? #3
	SLAB cache usage examples
	SLAB caches organization
	SLAB caches organization
	SLAB cache APIs
	Dealing with slab cache
	kmalloc() - kfree()
	kmalloc() - kfree() #2
	kvmalloc() - kvfree()
	GFP Flags
	Controlling the memory allocator
	GFP flags
	Linux Kernel’s stack
	Stack allocation within kernel
	Linux kernel stack
	Thank you

