Filesystem and Storage
Subsystems

Agenda

Overview

vV v v v VY

Introduction to storage and block devices
Virtual File system

The Block I/0 Layer

Process Address Space

Page cache and Page Writeback

Case study - ToyFsS filesystem

What is a File?

Introduction to
storage and block
devices

What are block devices?

» Storage devices are accessible through sector/block addresses
HDDs, SSDs, DVD/Blu-Ray etc
» Using specific communication protocols to access

IDE, SCSI, SATA, SAS, etc

The sector as the fundamental unit

» Storage’s smallest addressable unit

» Come by many names
Sectors, physical block size, I/0 blocks...

» May come in different sizes depending on the media
512 Bytes
4096 Bytes (Advanced Format)

2KiB - 64Kib (Blu-Rays)

Logical Blocks

» Aggregation of one or more consecutive physical sectors
» Smallest “logical” addressable unit for logical volumes
RAID arrays
LVMs volumes (depending on volume type)

other volume managers.

Filesystem Blocks

» Aggregation of one or more consecutive logical blocks or
physical sectors, depending on the underlying media

» Smallest “logical” addressable unit for:
Filesystems

User applications

Files

» A container of data

An “unstructured” array of bytes, nothing more, nothing
less

Stored on top of filesystem blocks (for disk-based
filesystems)

» Abstraction used by applications and users to store and retrieve
data

10

“Bringing them all together...”

file_01 file_02
A v
A 2 A

D L S

Userspace

Filesystem Blocks
(4096 Bytes)

Logical Blocks
(4096 Bytes)

Sector
(512 Bytes)

[/0O operations vs File Operations

» /O operations (IOPS) » File Operations (OPS)
Storage Unit Commands - File-related operations
95% READ and WRITE * open(), close()

read(), write()

stat(), Iseek()

11

12

Important things to keep in mind...

Physically, any write other than a sector IS NOT ATOMIC
The Read-Modify-Write curse
Torn writes

Storages are usually capable of reading and writing sectors in
batches

Virtual File System

The most important
subsystem

14

The VFS responsibility

All file and filesystem-related interfaces available to userspace and
other kernel subsystems.

Virtually everything is interconnected by the VFS

You read and write from/to network sockets using VFS
Abstracts the internal operations of all filesystems
Most system calls are initially handled by the VFS.

Together with the block layer, we have all necessary abstractions for
user-space to access data in any media using the same generic system
calls

15

The common file model

» VFS presents a “generic” view of files, filesystems, etc.

» And each filesystem must abstract their internal implementation
to the VFS using such model.

16

The journey of a write() syscall

write()

Userspace

\ 4

sys_write()

Virtual Filesystem

\ 4

ext4 file_write()

Filesystem

\ 4

bio()

Block Dev

17

Superblock

Represents a specific
mounted filesystem

Main VFS Abstractions

Inode

Descriptor containing

metadata details related to

a specific file.

Directory Entries

A single component in a
path (not a directory).

File

An in-memory
representation of an
opened file

18

Object Oriented recap

OOP is not a programming language, it is a programming
paradigm

The VFS (and basically the whole kernel) is objected oriented

C doesn't have OOP-specific support, so we need to use some
different approaches.

19

Operations

» Each object provides a “structure” providing a set of operations
for that specific object

» Each filesystem will populate this with their own operations

» Not all operations are mandatory and the VFS provide some
generic ones if the filesystem doesn't need any custom behavior

» Yesyou can call these operations “methods”

Documentation/filesystem/vfs.rst

20

Object
super_block
inode
dentry

file

VES data structures definitions

Operations
super_operations
inode_operations
dentry_operations

file_operations

Location
include/linux/fs.h
include/linux/fs.h
include/linux/dcache.h

include/linux/fs.h

21

Other important structures

file_system_type (include/linux/fs.h)
vfsmount (include/linux/fs.h)
files_struct (include/linux/fs.h)
fs_struct (include/linux/fs.h)

mnt_namespace (include/linux/fs.h)

22

The Dentry Cache

dentry object describes components in a path name
Pathname lookups are very expensive, so we cache it.

dentries have no on-disk correspondent, even on native Unix
filesystems.

Even invalid lookups are cached.

Dentry cache also provides a front end for the inode cache

Block I/0 Layer

24

Buffers

Every block read from disk storage, is cached in memory for some

time.

These blocks are stored in “buffers”

buffer_heads ... (on life support)

25

struct bio and bvec_iter

Bio - the basic container for I/0 within the kernel
Represents every “in-flight” IO operation
A bio describe a SINGLE contiguous storage location.

Each bio is divided in segments - chunks of contiguous memory.

26

struct bio and bvec_iter #2

struct bio

A 4

bio_vec bio_vec

bio_vec

bio_vec

A 4

e —— e —— e r e Y— ————— ————r——— ——— —— ——— ————— e ——— ————Y————/——

List Array

Page Structs

Block Dev

27

Request queues

Each block device keeps its own request queue
Higher level systems add requests to these queues

The device driver grab such requests and submit them to the
hardware

28

IO Schedulers

Do not confuse with CPU schedulers

Decide the order and the time requests are dispatched to the
block device

Most of the time, IO schedulers aim to reduce disk seeks

Linux provides different scheduling algorithms

“Free Memory is
wasted memory.”

The Page cache and
Page writeback

& RedHat

30

Linux page cache

Introduced initially in SysVr4 meant to cache only FS data
Linux page cache aims to cache any page-based object
The goal is to minimize disk I/0

milliseconds vs nanoseconds
Temporal locality

Once accessed, data is likely to be accessed again

31

Linux page cache #2

» Physical pages in RAM related to physical blocks on disk
» Page cache is dynamic
Can grow and consume any free memory

Can shrink and relieve memory pressure if memory is low

32

Page cache based WRITES

» Page cache writes can be implemented in different ways
No-write - system does not cache write operations

Write-through - Write operations update both cache and
disk

Write-back - Write goes to the cache only (Linux does this)

Page cache based READS

» Kernel first checks if the requested data is in the page cache

If we do, we have a cache hit and we don't need to go to
the disk

» If not, we have a cache miss.

The kernel will schedule a block I/0 operation to request
the data off disk

» Once the data is read, it will now be added to the cache

33

34

Page cache based WRITES #2

write operations write data to the page cache only
Pages in the cache are marked dirty by the write operation

After a determined amount of time and some rules, the pages
are written back to disk.

After return, a write() call does not guarantee the data is on disk

Applications are responsible for their data integrity, not the
kernel.

sync(), fsync(), fdatasync()

System performance is the goal here

35

Cache eviction

If memory is running low (or specified limits are being hit), the
kernel needs to shrink the page cache.

Which blocks should be uncached?
What if there are no ‘clean pages’ in the page cache?

The clairvoyant algorithm

36

Cache eviction #2

Linux use a modified LRU, consisting of two lists:

Active and Inactive list

Active list contain “hot” pages and can’t be evicted
Pages in the Inactive list are available for cache eviction

Only when a page is accessed while in the inactive list, it can be
“promoted” to the active list.

Both lists are balanced. If the active list becomes larger than the
inactive one, items are moved from the active to the inactive list

37

The address_space object

» Apagein the page cache, may contain multiple non-contiguous
physical disk blocks.

As files need not to be contiguous on disk, this works well.

» Linux uses the address_space object to manage entries in the
page cache and page 1/0 operations.

By not tying it to specific VFS objects, like the inode, SB, we
enable the page cache to be a generic cache, not usable
only by filesystems.

38

The address_space object #2

» Afile mapped in memory, will have a single address_space struct
representing it.

Opposite of VMAs, where we can have several VMAs
pointing to the same file.

It may have many virtual addresses, but it exists only once
in physical memory

» Show me some code

39

address_space operations

» Yes, address_space also have different behaviors depending on
the underlying user.

» The underlying user may be:

Filesystems, block devices, the buffer_head cache, swap
subsystem.

40

Flusher Threads

All storage writes are handled via the page cache
We will talk about DIO next

All writeback is deferred to the “flusher threads”

If data in the page cache is dirty
i.e. newer than their respective disk locations.

The pages will be written back to disk once some conditions are
met.

The writeback is handled by flusher threads, which are kworker
threads started on demand as a per-device basis

41

Flusher Threads #2

» S0, when does writeback occurs?
Free memory is smaller than a specific threshold
Dirty data grows older
The user process forces the writeback to disk

sync() syscalls family

42

Disclaimer!!

FILESYSTEMS DON'T CARE ABOUT USER DATA

It is not uncommon for users and developers to assume once a
write() returns, the data is written on disk

Again, it is user’s (or application’s) responsibility to ensure data is
safe

43

Direct IO

From userspace, we can bypass the page cache by using Direct
IO

All reads and writes goes from/to user space memory
direct to/from disk using DMA.

This has a big potential to increase performance

But as anything in computer world, there is a trade-off
With DIO applications have more control over 10
CPU usage is reduced (and potentially power consumption)

IO must be aligned with the device's sector sizes

44

Going further

» different filesystem technologies
data allocation
metadata allocation

journaling

Case study:
The Ext2 Filesystem

46

Ext2 Disk Layout

Superblock GDT Block Bitmap | Inode Bitmap | Inode Table | Data Blocks
Block Group #0 Block Group #1 Block Group #2 Block Group #N
Boot Sector Ext2 Filesystem
MBR Partition 1 Partition 2 Partition 3 Partition 4

https://en.wikipedia.org/wiki/Ext2

Ext2 Disk Layout #2

Reserved Block Inode Inode Data
GDT Blocks Bitmap Bitmap Table Blocks

~. N/ e

===

__

Group
Descriptor
Table ||

_______________________ e e e e e e ==
N _-"
N -
N _-
AN -
N P

Superblock . -

o=

Block Group #0 Block Group #1 Block Group #2 ... | Block Group #N

47

https://en.wikipedia.org/wiki/Ext2

On-disk vs In-memory structures

Object

Superblock

Group Descriptor Table
Block bitmap

Inode bitmap

Inode table

Data blocks

48

https://en.wikipedia.org/wiki/Ext2

On-disk

ext2_super_block

ext2_group_desc

Raw format
Raw format
Array of inodes

file_operations

In-memory
ext2_sb_info
ext2_group_desc
Raw format

Raw format

Raw format

include/linux/fs.h

49

On-memory and on-disk structures

ext_sb_info Memory

ext_superblock Block Device

https://en.wikipedia.org/wiki/Ext2

50

Initializing an Ext2 Filesystem

» As virtually any other filesystem - it is initialized in userspace via
specific tools (mkfs and friends)

» Goals:
parse config options
analyze the disk

create and initialize all metadata needed so that the kernel
can properly mount and operate the filesystem

https://en.wikipedia.org/wiki/Ext2

51

Ext2 operations (aka methods)

» super_operations -> ext2_sops

» inode_operations ->
ext2_file_inode_operations
ext2_dir_operations
ext2_special_operations

» file_operations -> ext2_file_operations

» vm_operations_struct -> ext2_dax_vm_ops (no ops defined for non-dax)

» address_space_operations -> ext2_aops (ext2_dax_aops)

https://en.wikipedia.org/wiki/Ext2

52

Metadata management

» File layout on disk may differ from the user perspective
File data can be scattered everywhere on disk
Even though users just see a contiguous array of bytes
» Files may have holes in them (Sparse files)
» Space management attempts to address 2 main problems
Space fragmentation - big deal for spindles

Time efficiency

https://en.wikipedia.org/wiki/Ext2

53

Inode creation

» ext2_new_inode() allocate an ext2 disk inode and returns the
address of the corresponding VFS inode object

» file vs directory allocation

» Update block group metadata

» Update superblock

» Initialize inode object

» Initialize quotas, acls, system security

» Pre-fetch the on-disk inode block where the new inode will be
written

https://en.wikipedia.org/wiki/Ext2

54

Inode deletion

» Homework

Go and figure out what ext2_free_inode() does

https://en.wikipedia.org/wiki/Ext2

55

Data Addressing

» Files consists of blocks stored within block groups
» We can refer to them either as:
Their relative position inside the file (File block num)

Their position within the volume/partition (Logical block
num)

https://en.wikipedia.org/wiki/Ext2

56

Data Addressing #2

» Retrieval of a file's logical block number, is a two-step process:

1 - Derive from the file offset, the block index containing
such offset

2- Translate the file block number to the corresponding
logical block number

» Ext2 uses a simple data blocks management named Indirect
blocks

» The ext2_inode contains an array of 15 block pointers

https://en.wikipedia.org/wiki/Ext2

Data Addressing #3

Inode Table Inode Direct Blocks Indirect Blocks (1024) Double Indirect (1M)

T

RaN
N
N

|

Triple Indirect (1G)

T N =2 W= N - -

5
https://en.wikipedia.org/wiki/Ext2#Inodes

58

Block allocation

» ext2_get_block() and ext2_new_blocks()
Initially, attempts to find if the block already exists
If not, allocate a new one (or several ones)

» The allocator tries to reduce fragmentation, by allocating blocks
as close as possible to the last already allocated block.

» The FS also does pre-allocation, by anticipating next writes
beyond the first block requested.

» Ext2 allocator is a bit smarter now, and it tries to allocate blocks
in batches

https://en.wikipedia.org/wiki/Ext2

59

Data deletion

» Data blocks must be reclaimed once a file is deleted or truncated
» We can also ‘leak’ data blocks the same way we leak memory
» Homework

Go read what ext2_truncate_blocks() and ext2_free blocks() do

https://en.wikipedia.org/wiki/Ext2

60

Modern filesystem technologies

» Journalling
» COW filesystems
» Dynamically allocation of metadata

» Extents

https://en.wikipedia.org/wiki/Ext2

Extra Mile:
TOyFS

62

Overview

» Simple filesystem inspired on Steve Pate's UXFS
» Fixed 512 blocks of 2048 bytes (total space 1MiB)

» Implements fundamental filesystem operations

https://github.com/linuxtoyfs
https://www.goodreads.com/book/show/16769772-unix-filesystems

63

Object
Superblock
Inode list
Block bitmap
Data blocks

Directory entry

On-disk and In-memory structures

Block
#0
#1
#2

#3 to #512

On-disk
tfs_dsb
tfs_dinode
Raw format
User data

tfs_dentry

In-memory
tfs_fs_info
tfs_inode_info
Raw format
User data

tfs_dentry

64

Superblock Inode Block

//

———

N

el

7

Block size
2048 Bytes

Disk layout

Block Bitmap

Data Blocks

0 1|2||3|

Partition #1

Partition #2

Partition #3

Partition #N

Filesystem Size
1MiB

65

ok WN - O

MY

Inode

ToyFS data addressing

Data Blocks (7)

Block bitmap

linkedin.com/company/red-hat

Thank you

youtube.com/user/RedHatVideos

Red Hat is the world’s leading provider of facebook com/redhatine

enterprise open source software solutions.
Award-winning support, training, and

K

twitter.com/RedHat

consulting services make
Red Hat a trusted adviser to the Fortune 500.

	Filesystem and Storage Subsystems
	Slide 2
	What is a File?
	Introduction to storage and block devices
	What are block devices?
	The sector as the fundamental unit
	Logical Blocks
	Filesystem Blocks
	Files
	“Bringing them all together…”
	I/O operations vs File Operations
	Important things to keep in mind…
	Virtual File System
	The VFS responsibility
	The common file model
	The journey of a write() syscall
	Main VFS Abstractions
	Object Oriented recap
	Operations
	VFS data structures definitions
	Other important structures
	The Dentry Cache
	Block I/O Layer
	Buffers
	struct bio and bvec_iter
	struct bio and bvec_iter #2
	Request queues
	IO Schedulers
	Slide 29
	Linux page cache
	Linux page cache #2
	Page cache based WRITES
	Page cache based READS
	Page cache based WRITES #2
	Cache eviction
	Cache eviction #2
	The address_space object
	The address_space object #2
	address_space operations
	Flusher Threads
	Flusher Threads #2
	Disclaimer!!
	Direct IO
	Going further
	Case study: The Ext2 Filesystem
	Ext2 Disk Layout
	Ext2 Disk Layout #2
	On-disk vs In-memory structures
	On-memory and on-disk structures
	Initializing an Ext2 Filesystem
	Ext2 operations (aka methods)
	Metadata management
	Inode creation
	Inode deletion
	Data Addressing
	Data Addressing #2
	Data Addressing #3
	Block allocation
	Data deletion
	Modern filesystem technologies
	Extra Mile: ToyFS
	Overview
	On-disk and In-memory structures
	Disk layout
	ToyFS data addressing
	Thank you

