
Version number here V00000

Filesystem and Storage
Subsystems

1

Agenda

2

Overview ▸ Introduction to storage and block devices
▸ Virtual File system
▸ The Block I/O Layer
▸ Process Address Space
▸ Page cache and Page Writeback
▸ Case study - ToyFS filesystem

Version number here V00000

3

What is a File?

Version number here V00000

4

Introduction to
storage and block
devices

5

▸ Storage devices are accessible through sector/block addresses

･ HDDs, SSDs, DVD/Blu-Ray etc

▸ Using specific communication protocols to access

･ IDE, SCSI, SATA, SAS, etc

What are block devices?

6

▸ Storage’s smallest addressable unit

▸ Come by many names

･ Sectors, physical block size, I/O blocks…

▸ May come in different sizes depending on the media

･ 512 Bytes

･ 4096 Bytes (Advanced Format)

･ 2KiB - 64Kib (Blu-Rays)

The sector as the fundamental unit

7

▸ Aggregation of one or more consecutive physical sectors

▸ Smallest “logical” addressable unit for logical volumes

･ RAID arrays

･ LVMs volumes (depending on volume type)

･ other volume managers.

Logical Blocks

8

▸ Aggregation of one or more consecutive logical blocks or
physical sectors, depending on the underlying media

▸ Smallest “logical” addressable unit for:

･ Filesystems

･ User applications

Filesystem Blocks

9

▸ A container of data

･ An “unstructured” array of bytes, nothing more, nothing
less

･ Stored on top of filesystem blocks (for disk-based
filesystems)

▸ Abstraction used by applications and users to store and retrieve
data

Files

10

“Bringing them all together…”

file_01

Sector
(512 Bytes)

Logical Blocks
(4096 Bytes)

Filesystem Blocks
(4096 Bytes)

Userspacefile_02

11

▸ I/O operations (IOPS)

･ Storage Unit Commands

･ 95% READ and WRITE

I/O operations vs File Operations

▸ File Operations (OPS)

･ File-related operations

･ open(), close()

･ read(), write()

･ stat(), lseek()

12

▸ Physically, any write other than a sector IS NOT ATOMIC

▸ The Read-Modify-Write curse

▸ Torn writes

▸ Storages are usually capable of reading and writing sectors in
batches

Important things to keep in mind…

Version number here V00000

13

Virtual File System
The most important
subsystem

14

▸ All file and filesystem-related interfaces available to userspace and
other kernel subsystems.

▸ Virtually everything is interconnected by the VFS

･ You read and write from/to network sockets using VFS

▸ Abstracts the internal operations of all filesystems

▸ Most system calls are initially handled by the VFS.

▸ Together with the block layer, we have all necessary abstractions for
user-space to access data in any media using the same generic system
calls

The VFS responsibility

15

▸ VFS presents a “generic” view of files, filesystems, etc.

▸ And each filesystem must abstract their internal implementation
to the VFS using such model.

The common file model

16

The journey of a write() syscall

write() sys_write() ext4_file_write() bio()

Userspace Virtual Filesystem Filesystem Block Dev

Main VFS Abstractions

17

Represents a specific
mounted filesystem

Superblock

An in-memory
representation of an

opened file

File

A single component in a
 path (not a directory).

Directory Entries

Descriptor containing
metadata details related to

a specific file.

Inode

18

▸ OOP is not a programming language, it is a programming
paradigm

▸ The VFS (and basically the whole kernel) is objected oriented

▸ C doesn’t have OOP-specific support, so we need to use some
different approaches.

Object Oriented recap

19

Documentation/filesystem/vfs.rst

▸ Each object provides a “structure” providing a set of operations
for that specific object

▸ Each filesystem will populate this with their own operations

▸ Not all operations are mandatory and the VFS provide some
generic ones if the filesystem doesn’t need any custom behavior

▸ Yes you can call these operations “methods”

Operations

20

VFS data structures definitions

Object Operations Location

super_block super_operations include/linux/fs.h

inode inode_operations include/linux/fs.h

dentry dentry_operations include/linux/dcache.h

file file_operations include/linux/fs.h

21

▸ file_system_type (include/linux/fs.h)

▸ vfsmount (include/linux/fs.h)

▸ files_struct (include/linux/fs.h)

▸ fs_struct (include/linux/fs.h)

▸ mnt_namespace (include/linux/fs.h)

Other important structures

22

The Dentry Cache

▸ dentry object describes components in a path name

▸ Pathname lookups are very expensive, so we cache it.

▸ dentries have no on-disk correspondent, even on native Unix
filesystems.

▸ Even invalid lookups are cached.

▸ Dentry cache also provides a front end for the inode cache

Version number here V00000

23

Block I/O Layer

24

▸ Every block read from disk storage, is cached in memory for some
time.

▸ These blocks are stored in “buffers”

▸ buffer_heads … (on life support)

Buffers

25

▸ Bio - the basic container for I/O within the kernel

▸ Represents every “in-flight” IO operation

▸ A bio describe a SINGLE contiguous storage location.

▸ Each bio is divided in segments - chunks of contiguous memory.

struct bio and bvec_iter

26

struct bio and bvec_iter #2

page page page page

bio_vec bio_vec bio_vec bio_vecstruct bio

Block Dev

Page Structs

List Array

c

27

▸ Each block device keeps its own request queue

▸ Higher level systems add requests to these queues

▸ The device driver grab such requests and submit them to the
hardware

Request queues

28

▸ Do not confuse with CPU schedulers

▸ Decide the order and the time requests are dispatched to the
block device

▸ Most of the time, IO schedulers aim to reduce disk seeks

▸ Linux provides different scheduling algorithms

IO Schedulers

Version number here V00000

29

“Free Memory is
wasted memory.”

The Page cache and
Page writeback

30

▸ Introduced initially in SysVr4 meant to cache only FS data

▸ Linux page cache aims to cache any page-based object

▸ The goal is to minimize disk I/O

･ milliseconds vs nanoseconds

▸ Temporal locality

･ Once accessed, data is likely to be accessed again

Linux page cache

31

▸ Physical pages in RAM related to physical blocks on disk

▸ Page cache is dynamic

･ Can grow and consume any free memory

･ Can shrink and relieve memory pressure if memory is low

Linux page cache #2

32

▸ Page cache writes can be implemented in different ways

･ No-write - system does not cache write operations

･ Write-through - Write operations update both cache and
disk

･ Write-back - Write goes to the cache only (Linux does this)

Page cache based WRITES

33

▸ Kernel first checks if the requested data is in the page cache

･ If we do, we have a cache hit and we don’t need to go to
the disk

▸ If not, we have a cache miss.

･ The kernel will schedule a block I/O operation to request
the data off disk

▸ Once the data is read, it will now be added to the cache

Page cache based READS

34

▸ write operations write data to the page cache only

▸ Pages in the cache are marked dirty by the write operation

▸ After a determined amount of time and some rules, the pages
are written back to disk.

▸ After return, a write() call does not guarantee the data is on disk

▸ Applications are responsible for their data integrity, not the
kernel.

･ sync(), fsync(), fdatasync()

▸ System performance is the goal here

Page cache based WRITES #2

35

▸ If memory is running low (or specified limits are being hit), the
kernel needs to shrink the page cache.

▸ Which blocks should be uncached?

▸ What if there are no ‘clean pages’ in the page cache?

▸ The clairvoyant algorithm

Cache eviction

36

▸ Linux use a modified LRU, consisting of two lists:

▸ Active and Inactive list

▸ Active list contain “hot” pages and can’t be evicted

▸ Pages in the Inactive list are available for cache eviction

▸ Only when a page is accessed while in the inactive list, it can be
“promoted” to the active list.

▸ Both lists are balanced. If the active list becomes larger than the
inactive one, items are moved from the active to the inactive list

Cache eviction #2

37

▸ A page in the page cache, may contain multiple non-contiguous
physical disk blocks.

･ As files need not to be contiguous on disk, this works well.

▸ Linux uses the address_space object to manage entries in the
page cache and page I/O operations.

･ By not tying it to specific VFS objects, like the inode, SB, we
enable the page cache to be a generic cache, not usable
only by filesystems.

The address_space object

38

▸ A file mapped in memory, will have a single address_space struct
representing it.

･ Opposite of VMAs, where we can have several VMAs
pointing to the same file.

･ It may have many virtual addresses, but it exists only once
in physical memory

▸ Show me some code

The address_space object #2

39

▸ Yes, address_space also have different behaviors depending on
the underlying user.

▸ The underlying user may be:

･ Filesystems, block devices, the buffer_head cache, swap
subsystem.

address_space operations

40

▸ All storage writes are handled via the page cache

･ We will talk about DIO next

▸ All writeback is deferred to the “flusher threads”

▸ If data in the page cache is dirty

･ i.e. newer than their respective disk locations.

▸ The pages will be written back to disk once some conditions are
met.

▸ The writeback is handled by flusher threads, which are kworker
threads started on demand as a per-device basis

Flusher Threads

41

▸ So, when does writeback occurs?

･ Free memory is smaller than a specific threshold

･ Dirty data grows older

･ The user process forces the writeback to disk

･ sync() syscalls family

Flusher Threads #2

42

FILESYSTEMS DON’T CARE ABOUT USER DATA

▸ It is not uncommon for users and developers to assume once a
write() returns, the data is written on disk

▸ Again, it is user’s (or application’s) responsibility to ensure data is
safe

Disclaimer!!

43

▸ From userspace, we can bypass the page cache by using Direct
IO

･ All reads and writes goes from/to user space memory
direct to/from disk using DMA.

▸ This has a big potential to increase performance

･ But as anything in computer world, there is a trade-off

▸ With DIO applications have more control over IO

▸ CPU usage is reduced (and potentially power consumption)

▸ IO must be aligned with the device’s sector sizes

Direct IO

44

▸ different filesystem technologies

･ data allocation

･ metadata allocation

･ journaling

Going further

Version number here V00000

45

Case study:
The Ext2 Filesystem

46

https://en.wikipedia.org/wiki/Ext2

Ext2 Disk Layout

Partition 1 Partition 2 Partition 3 Partition 4MBR

Block Group #0 Block Group #1 Block Group #2

Ext2 FilesystemBoot Sector

Block Group #N

Superblock

…

GDT Block Bitmap Inode Bitmap Inode Table Data Blocks

47

https://en.wikipedia.org/wiki/Ext2

Ext2 Disk Layout #2

Block Group #0 Block Group #1 Block Group #2 Block Group #N…

Superblock

Group
Descriptor

Table

Reserved
GDT Blocks

Block
Bitmap

Data
Blocks

Inode
Bitmap

Inode
Table

48

https://en.wikipedia.org/wiki/Ext2

On-disk vs In-memory structures

Object On-disk In-memory

Superblock ext2_super_block ext2_sb_info

Group Descriptor Table ext2_group_desc ext2_group_desc

Block bitmap Raw format Raw format

Inode bitmap Raw format Raw format

Inode table Array of inodes Raw format

Data blocks file_operations include/linux/fs.h

49

https://en.wikipedia.org/wiki/Ext2

On-memory and on-disk structures

ext_superblock

ext_sb_info

Block Device

Memory

50

https://en.wikipedia.org/wiki/Ext2

Initializing an Ext2 Filesystem

▸ As virtually any other filesystem - it is initialized in userspace via
specific tools (mkfs and friends)

▸ Goals:

･ parse config options

･ analyze the disk

･ create and initialize all metadata needed so that the kernel
can properly mount and operate the filesystem

51

https://en.wikipedia.org/wiki/Ext2

▸ super_operations -> ext2_sops

▸ inode_operations ->

･ ext2_file_inode_operations

･ ext2_dir_operations

･ ext2_special_operations

▸ file_operations -> ext2_file_operations

▸ vm_operations_struct -> ext2_dax_vm_ops (no ops defined for non-dax)

▸ address_space_operations -> ext2_aops (ext2_dax_aops)

Ext2 operations (aka methods)

52

https://en.wikipedia.org/wiki/Ext2

▸ File layout on disk may differ from the user perspective

･ File data can be scattered everywhere on disk

･ Even though users just see a contiguous array of bytes

▸ Files may have holes in them (Sparse files)

▸ Space management attempts to address 2 main problems

･ Space fragmentation - big deal for spindles

･ Time efficiency

Metadata management

53

https://en.wikipedia.org/wiki/Ext2

▸ ext2_new_inode() allocate an ext2 disk inode and returns the
address of the corresponding VFS inode object

▸ file vs directory allocation

▸ Update block group metadata

▸ Update superblock

▸ Initialize inode object

▸ Initialize quotas, acls, system security

▸ Pre-fetch the on-disk inode block where the new inode will be
written

Inode creation

54

https://en.wikipedia.org/wiki/Ext2

▸ Homework

･ Go and figure out what ext2_free_inode() does

Inode deletion

55

https://en.wikipedia.org/wiki/Ext2

▸ Files consists of blocks stored within block groups

▸ We can refer to them either as:

･ Their relative position inside the file (File block num)

･ Their position within the volume/partition (Logical block
num)

Data Addressing

56

https://en.wikipedia.org/wiki/Ext2

▸ Retrieval of a file’s logical block number, is a two-step process:

･ 1 - Derive from the file offset, the block index containing
such offset

･ 2- Translate the file block number to the corresponding
logical block number

▸ Ext2 uses a simple data blocks management named Indirect
blocks

▸ The ext2_inode contains an array of 15 block pointers

Data Addressing #2

57

https://en.wikipedia.org/wiki/Ext2#Inodes

Data Addressing #3
Direct Blocks

(12)
Indirect Blocks (1024) Double Indirect (1M)

Triple Indirect (1G)

1
2
3
4
5

1
2
1
3
1
4
1
5

InodeInode Table

58

https://en.wikipedia.org/wiki/Ext2

▸ ext2_get_block() and ext2_new_blocks()

･ Initially, attempts to find if the block already exists

･ If not, allocate a new one (or several ones)

▸ The allocator tries to reduce fragmentation, by allocating blocks
as close as possible to the last already allocated block.

▸ The FS also does pre-allocation, by anticipating next writes
beyond the first block requested.

▸ Ext2 allocator is a bit smarter now, and it tries to allocate blocks
in batches

Block allocation

59

https://en.wikipedia.org/wiki/Ext2

▸ Data blocks must be reclaimed once a file is deleted or truncated

▸ We can also ‘leak’ data blocks the same way we leak memory

▸ Homework

･ Go read what ext2_truncate_blocks() and ext2_free_blocks() do

Data deletion

60

https://en.wikipedia.org/wiki/Ext2

▸ Journalling

▸ COW filesystems

▸ Dynamically allocation of metadata

▸ Extents

Modern filesystem technologies

Version number here V00000

61

Extra Mile:
ToyFS

62
https://github.com/linuxtoyfs
https://www.goodreads.com/book/show/16769772-unix-filesystems

▸ Simple filesystem inspired on Steve Pate's UXFS

▸ Fixed 512 blocks of 2048 bytes (total space 1MiB)

▸ Implements fundamental filesystem operations

Overview

63

On-disk and In-memory structures

Object Block On-disk In-memory

Superblock #0 tfs_dsb tfs_fs_info

Inode list #1 tfs_dinode tfs_inode_info

Block bitmap #2 Raw format Raw format

Data blocks #3 to #512 User data User data

Directory entry - tfs_dentry tfs_dentry

64

Disk layout

Partition #1 Partition #2 Partition #3 Partition #N…

Superblock Data BlocksInode Block Block Bitmap

Block size
2048 Bytes

0 21 3 511

Filesystem Size
1MiB

65

ToyFS data addressing
Data Blocks (7)

0
1
2
3
4
5
6

Inode Block bitmap

Version number here V00000

linkedin.com/company/red-hat

youtube.com/user/RedHatVideos

facebook.com/redhatinc

twitter.com/RedHat

66

Red Hat is the world’s leading provider of
enterprise open source software solutions.
Award-winning support, training, and
consulting services make
Red Hat a trusted adviser to the Fortune 500.

Thank you

	Filesystem and Storage Subsystems
	Slide 2
	What is a File?
	Introduction to storage and block devices
	What are block devices?
	The sector as the fundamental unit
	Logical Blocks
	Filesystem Blocks
	Files
	“Bringing them all together…”
	I/O operations vs File Operations
	Important things to keep in mind…
	Virtual File System
	The VFS responsibility
	The common file model
	The journey of a write() syscall
	Main VFS Abstractions
	Object Oriented recap
	Operations
	VFS data structures definitions
	Other important structures
	The Dentry Cache
	Block I/O Layer
	Buffers
	struct bio and bvec_iter
	struct bio and bvec_iter #2
	Request queues
	IO Schedulers
	Slide 29
	Linux page cache
	Linux page cache #2
	Page cache based WRITES
	Page cache based READS
	Page cache based WRITES #2
	Cache eviction
	Cache eviction #2
	The address_space object
	The address_space object #2
	address_space operations
	Flusher Threads
	Flusher Threads #2
	Disclaimer!!
	Direct IO
	Going further
	Case study: The Ext2 Filesystem
	Ext2 Disk Layout
	Ext2 Disk Layout #2
	On-disk vs In-memory structures
	On-memory and on-disk structures
	Initializing an Ext2 Filesystem
	Ext2 operations (aka methods)
	Metadata management
	Inode creation
	Inode deletion
	Data Addressing
	Data Addressing #2
	Data Addressing #3
	Block allocation
	Data deletion
	Modern filesystem technologies
	Extra Mile: ToyFS
	Overview
	On-disk and In-memory structures
	Disk layout
	ToyFS data addressing
	Thank you

