
Kernel debugging

1

Live data

Kernel debugging
approaches 1/2

Vratislav Bendel
Principal Software Maintenance Engineer

Agenda

2

What we’ll
cover today:

▸ Userspace data
system monitoring and process tracing

▸ Perf
The performance analysis swiss-knife

▸ Kernel tracing
trace-cmd, perf probe

▸ Code injections
systemtap, eBPF

Mindset

M
indset

3

Methodology matters

Mindset

4

▸ 1) Define the problem and form a hypothesis

▸ 2) Determine how to verify the hypothesis - what data are needed

▸ 3) Use adequate tool to collect the data

▸ 4) Analyze the data and verify the hypothesis

▸ .. Finished?

･ Yes -> Well done!

･ No -> Repeat from 1)

How to think when tackling a problem

Mindset

System live data

System
 live data

5

The bread and butter

System live data

6

Lot of information are readable directly from kernel via VFS under /proc

(procfs), /sys (sysfs), /sys/kernel/debug (debugfs). Userspace

monitoring tools tend to get information from these interfaces.

▸ /proc/meminfo, ../slabinfo, ../buddyinfo, ../zoneinfo

▸ /proc/sched_debug

▸ /sys/devices/…

Stats and infos

System live data

System live data

7

From system administration perspective, it’s always recommended to

periodically collect system data and save them to permanent storage, in

order to inspect historical statistics whenever needed.

There are many tools that collect such information:

▸ Simple: sysstat (sar), collectl, nmon, atop

▸ More complex: Performance Co-Pilot, Prometheus

▸ Data visualization: Graphana

▸ and more…

Stats monitoring

System live data

Process tracing

P
rocess tracing

8

user <-> kernel boundary

Process tracing

9

▸ Tracing syscall invocations

▸ Significant overhead

▸ My favourite flags:

strace -fttTxCy -o <out> <comm>

strace

Process tracing

Process tracing

10

▸ Tracing library function calls (glibc, …)

▸ Works similarly as strace, even has similar flags

ltrace

Process tracing

Perf

Perf

11

The performance analysis swiss-knife

Perf

12
(*) Kernel trace events are further covered later in this lecture

Collects aggregate data points for specific “events” to form statistics.

▸ # perf list - List available events

▸ Hardware events

･ Depend on specific HW

･ Performance Monitoring Unit [PMU] counters

▸ Software events

･ Kernel stats & trace events (*)

What is it?

Perf

Perf

13

▸ # perf stat [-e event] [program]

▸ Collects and outputs simple aggregates of the specified events

▸ Useful for general performance analysis / troubleshooting

▸ Mindset hint: When troubleshooting performance, there should always

be a “good” and “bad” example, or at least a “good” target that is

realistic, so you may compare which adjustments have positive effect.

perf stat

Perf

Perf

14

▸ # perf record [-a] [-g] [-- program]

Collects “cycles” event: Programs PMU counter(s) to periodically

interrupt the CPU and record the RIP and other data.

▸ Hint: System-wide perf profile

perf record -ag -- sleep X

perf record

Perf

Perf

15

▸ # perf report [-i perf.data]

Perf-report command is used to inspect perf.data previously recorded by

perf-record command. It has various options how to “look” at the

recorded data.

▸ [--sort=...] - a “group-by” query model

▸ [--time] - inspect only specific timeslice

▸ [--no-children] - disable “graph aggregation”

perf report

Perf

Perf

16

You may also use perf-report’s “--kallsyms” option to supply kernel symbols

To inspect perf.data on another machine, you want to have symbols from

the machine where the data were recorded.

▸ # perf archive

･ Generates a perf.data.tar[.bz2|.xz] archive containing symbol

map for data that were recorded in ~/.debug folder.

･ Does NOT contain the actual data

･ Unpack this data to local machine:

rm -rf ~/.debug/* && tar xf perf.data.tar.xz -C ~/.debug/

perf.data analysis on another machine

Perf

Perf

17

Useful for:

▸ “What is the kernel doing?” - analyzing %sys CPU usage

▸ Performance profiling for applications, workloads or whole systems

･ Tuning

･ Troubleshooting

When to use perf?

Perf

Kernel tracing

Kernel tracing

18

Almost “breakpoints”

Kernel tracing

19

Kernel source code contains defined “trace points”, also known as “events”.

These can be dynamically enabled on live kernel to log data whenever

execution passes the place in source code where the trace point is defined.

Uses sync_core() synchronization mechanism to live-patch kernel execution

machine code - replaces designated places with int3 instruction.

What is it?

Kernel tracing

Kernel tracing

20

▸ include/linux/tracepoint.h

･ Macro API definitions

･ register_trace_##name(void (*probe)(data_proto), void *data)

▸ kernel/trace/*

･ Various tracepoint definitions

Trace event definition

Kernel tracing

Kernel tracing

21

Tracing subsystem control built on VFS mounted at

▸ /sys/kernel/debug/tracing

▸ echo 1|0 > …/tracing/events/<group>/<event>/enabled

▸ echo 1|0 > …/tracing/tracing_on

▸ cat …/tracing/trace

▸ and much much more…

Control interface (VFS)

Kernel tracing

Kernel tracing

22

The trace-cmd tool is an efficient to use command-line wrapper to control

kernel tracing interface via single-line commands.

▸ # trace-cmd list - list all events

▸ # trace-cmd record [-e event] [-o output_file]

･ Default output: “./trace.dat”

▸ # trace-cmd report [-i input_file]

▸ Hint: Write up post-processing parsers for trace-cmd-report output.

trace-cmd

Kernel tracing

Kernel tracing

23

Kernel tracing subsystem features several complex tracers. Effectively

these tracers are simply groups of specific events and can be enabled

alongside any other events.

▸ # trace-cmd record [-p tracer]

･ Example: function_graph, osnoise

▸ Beware of trace-buffer overflow, especially with function_graph tracer!

･ Hint: Control buffer size or write-out frequency via ‘-b’ and ‘-s’

complex tracers

Kernel tracing

Kernel tracing

24

Custom tracepoints can be defined via …/tracing/kprobe_events

The perf-probe command can be used as a wrap-up:

▸ # perf probe [-m module] [-a probe_definition] [-d probe_name]

･ Probe definition syntax: # man perf probe

▸ Then you can enable the probe as any other tracing event

perf probe

Kernel tracing

Code injections

C
ode injections

25

Absolute control

Code injections

26

Concept

Code injections

Tracing has the benefit of being relatively lightweight, but generally

provides only read-only capabilities without any logic. Dynamic code

patching can be used for even more complex adjustments - you can add

logic or even modify live data.

Primary tools to achieve this are:

▸ Systemtap

▸ eBPF (extended Berkeley Packet Filter)

Code injections

27

Systemtap

Code injections

▸ Scripting language to create custom complex probes

▸ Many pre-implemented library functions and probes (ref. tapsets)

▸ Can embed direct C-lang code (you can pretty much modify kernel :))

▸ Compiles a kernel module

▸ Relatively heavy-weight

▸ # man stap - manual entrypoint

Code injections

28

eBPF

Code injections

▸ Works on kprobes, similar as kernel tracing

▸ More lightweight than systemtap (no kernel module)

▸ Existing pre-implemented eBPF scripts - /usr/share/bpftrace/tools

▸ Commonly used nowadays in kernel-bypass mechanisms (ex. DPDK)

linkedin.com/company/red-hat

youtube.com/user/RedHatVideos

facebook.com/redhatinc

twitter.com/RedHat

B
asic Intro to Linux Kernel

29

Red Hat is the world’s leading provider of enterprise

open source software solutions. Award-winning support,

training, and consulting services make Red Hat a trusted

adviser to the Fortune 500.

Thank you

