
Kernel debugging

1

Post-mortem

Kernel debugging
approaches 2/2

Vratislav Bendel
Principal Software Maintenance Engineer

Agenda

2

What we’ll
cover today:

▸ Kernel vmcore collection
kexec mechanism & kdump.service

▸ Panic types
non-exhaustive list

▸ Crash tool
how to?

▸ Analysis tutorial
examples, tips & tricks

Kernel vmcore collection

V
m

core collection

3

kexec & kdump.service

Vmcore collection

4

Kexec is a systemcall that enables you to boot into another kernel.

▸ kexec [-p] the ‘-p’ flag specifies a “panic kernel”

▸ crashkernel=[auto]

The ‘crashkernel=’ kernel command line parameter specifies

size of memory region reserved for a “panic kernel”.

Boot into another kernel

Kexec

Vmcore collection

5

Kdump is a systemd.service that handles all component for kernel

vmcore collection.

▸ /etc/kdump.conf

Configuration file - specify dump target and method

▸ kdump initramfs / initrd image

Contains software to mount the dump target and specialized

service to save the vmcore.

Systemd.service automation

Kdump

Vmcore collection

6

▸ Primary kernel reserves ‘crashekernel=’ region at boot

▸ Kdump.service sets up kdump-initramfs and loads panic kernel

▸ Once primary kernel calls panic(), kexec boots into panic kernel

▸ Panic kernel’s systemd-init sequence is set up to:

･ Mount the dump target FS

･ Special kdump.service saves the vmcore and performs

final_action (default ‘reboot’)

How it works?

Vmcore collection

Vmcore collection

7

It’s always recommended to test your kdump setup to be sure it works.

▸ Manual panic: # echo ‘c’ > /proc/sysrq-trigger (*)

▸ After the machine reboots, check the dump target. It should contain:

･ hostname-timestamp directory (default) containing:

･ vmcore

･ vmcore-dmesg.txt

･ [kexec-dmesg.txt] (depending on version)

Testing

Vmcore collection

(*) Sysrq facility needs to be enabled – see /proc/sys/kernel/sysrq – man proc

Vmcore collection

8

Kdump.service failure >

▸ Check kdump.service logs - it should tell you what’s wrong

Kdump.service OK, vmcore “incomplete” >

▸ Low disk space on target

▸ Unstable network connection to remote target

Troubleshooting

Vmcore collection

Vmcore collection

9

Kdump.service OK, no vmcore at all >

▸ Sufficient crashkernel= size ?

▸ Read-only target filesystem ?

You may use ‘failure_action=shell’ to drop into a shell on the panic kernel

and troubleshoot from there.

If you’d need extra tools you can add them via ‘extra_bins’.

Optionally you may utilize ‘kdump_pre’ or ‘kdump_post’ hooks.

Troubleshooting

Vmcore collection

Panic types

Panic types

10

Keep your towel close!

Panic types

11

▸ Done by panic sysrq - either sys_write or magic key combo

▸ Commonly used by clustering software for “node fencing”

▸ Usually used when there’s problem with workload, not necessarily

with the kernel

Explicit user-issued panic

Sysrq panic

Panic types

12

Panics when a BUG() or conditional BUG_ON() defined in kernel source

code gets executed. Usually represented as ‘ud2’ instruction.

▸ The precise source file+line are logged.

Optionally also WARN() and WARN_ON() can panic via

▸ /proc/sys/kernel/panic_on_warn [0|1] default ‘0’

Code-defined BUG()

Kernel BUGs

Panic types

13

Optional panic when kernel’s OOM-killer get invoked.

▸ /proc/sys/vm/panic_on_oom [0|1|2]

･ 0 - no panic (default)

･ 1 - panic on global OOM

･ 2 - panic on every OOM (including cgroup limit OOM)

▸ The logged OOM report contains valuable information

Out of memory

OOM

Panic types

14

Optional panic when kernel reports “blocked task”

▸ /proc/sys/kernel/hung_task_panic [0|1]

A task was in UNinterruptible sleep for longer than threshold:

▸ /proc/sys/kernel/hung_task_timeout default: 120 sec

Blocked tasks, hung system

Hung task panic

Panic types

15

Happens when kernel-space code attempts to dereference an

inappropriate address pointer (0x0, 0xaf, 0xf002, …)

▸ Most commonly an access to a struct member that is 0x0

▸ Memory corruptions manifest usually as NULL derefs

Dereferencing a bad pointer

NULL deref

Panic types

16

General protection fault is a processor exception generated when the

current “context” doesn’t have adequate permissions to perform the

issued memory operation. For example:

▸ Reading a reserved/protected page “owned” by different “context”.

▸ Writing to a read-only page.

▸ Attempting to execute a non-executable page.

▸ The “type” is logged. Troubleshooting depends on type.

Bad read/write

General protection fault

Panic types

17

Soft lockup is a condition when a CPU doesn’t reschedule running tasks.

▸ Cannot happen in preemptible context.

▸ Locking bugs - note spinlocks

▸ Endless loops - easy fix = cond_resched()

▸ Starvation by SCHED_FIFO tasks

▸ Threshold = /proc/sys/kernel/watchdog_thresh *2 (default 20 sec)

▸ NOTE: spurious soft lockups due to vCPU lags in VMs

CPU not rescheduling

Soft lockup

Panic types

18

Hard lockup is a condition when a CPU doesn’t handle interrupt.

▸ Effectively makes the CPU uncontrollable.

▸ “soft lockup” in irq_disabled context

▸ HW malfunction

▸ Check the “interrupts enabled” CPU flag

▸ Threshold = /proc/sys/kernel/watchdog_thresh (default 10 sec)

CPU uncontrollable

Hard lockup

Panic types

19

Understanding how lockups are detected is important in order to determine what exactly went wrong.

Soft & hard lockup detection has 3 components:

▸ watchdog kthread

･ High sched prio. Increments a counter (Task was rescheduled).

▸ watchdog interrupt (high-resolution timer)

･ Checks if the watchdog kthread counter is being incremented.

･ Saves timestamp (Interrupt was handled).

▸ watchdog NMI

･ Implemented as perf_event

･ Checks if last watchdog interrupt timestamp is within threshold.

Kernel watchdogs

Lockup detection

Panic types

20

▸ /proc/sys/kernel/softlockup_panic [0|1]

▸ /proc/sys/kernel/hardlockup_panic [0|1]

▸ /proc/sys/kernel/wachdog_thresh default = 10

･ 10 sec hard lockup 20 sec soft lockup

▸ /proc/sys/kernel/nmi_watchdog [0|1] Hard lockup detector

▸ /proc/sys/kernel/soft_watchdog [0|1] Soft lockup detector

▸ /proc/sys/kernel/watchdog [0|1] Both soft & hard

▸ /proc/sys/kernel/watchdog_cpumask

sysctls

Lockup detection

Panic types

21

▸ /proc/sys/kernel/panic_on_unrecovered_nmi [0|1] default ‘0’

▸ “Unrecovered NMI” - NMI without a registered handler

▸ Can be used to panic server via hardware NMI button

▸ Useful to panic “hanged” server to get a vmcore to inspect

Uhhuh..

Unknown NMI

Panic types

22

▸ /proc/sys/kernel/panic_on_rcu_stall [0|1] default ‘0’

▸ May be useful for high-availability cluster fencing

Synchronization problems

RCU stall panic

Crash tool

C
rash tool

23

Vmcore analysis

Crash tool

24

▸ # crash <vmlinux> <vmcore>

▸ Takes in “~/.crashrc”

･ Executes whatever is in crashrc in order

･ Useful for “default initial information” and

loading scripts and plugins

･ Hint: add “set hex” to your crashrc =)

Start ‘crash’

Crash tool

Crash tool

25

▸ crash> prompt

▸ You may use general shell commands with ‘!’ prefix

･ crash> !ls

･ crash> !cd …

･ crash> !cat <file>

Interactive environment

Crash tool

Crash tool

26

▸ crash> sys

Prints basic system information

▸ crash> sys -i

Prints HW/FW-related information, similar to “dmidecode”

System info

Crash tool

Crash tool

27

▸ crash> log [-T] [| less]

Inspect the kernel ring buffer log.

‘-T’ translates timestamps to human time.

▸ Hint: Checking logs before the panic happened, as well as the panic

report, is always a good place to start =)

Kernel ring buffer log

Crash tool

Crash tool

28

▸ crash> help [<command>]

Check what commands are available.

Check man-pages for various commands.

Man pages

Crash tool

Crash tool

29

Crash maintains a “current” context, which may be changed via ‘set’

command. By default this is set to the “panicking task” - the task that was

active on the CPU which called panic().

Current context

Crash tool

Crash tool

30
(**) Crash is heavily inspired by gdb

▸ crash> bt

Prints stack backtrace of the kernel stack of the “current” task in a

human readable form (gdb-like **).

▸ crash> bt [-c XYZ] [-r] [-f] [PID | *task_struct]

･ ‘-c’ specifies which CPUs’ active tasks’ kernel stacks to print

(‘-a’ for “all”)

･ ‘-f’ interleaves the function returns with raw stack data

･ ‘-r’ prints the raw stack

･ You may specify a PID or a task_struct pointer

CPU backtrace

Crash tool

Crash tool

31

▸ crash> runq

Prints “current” CPU runqueue.

▸ crash> runq -c XYZ

･ ‘-c’ specifies which CPUs’ runqueue to print (‘-a’ for “all”)

▸ crash> runq -T

･ ‘-T’ prints difference of runqueue timestamps to current time

･ Useful to understand if kernel timers were stuck on any CPUs

CPU runqueue

Crash tool

Crash tool

32

▸ crash> timer

Prints timers on standard timer bases

▸ crash> timer -r

Prints timers on high-resolution timer bases

Timers

Crash tool

Crash tool

33

▸ crash> mod

Prints loaded modules

▸ crash> mod -t

Prints modules that cause kernel taint

Loaded modules

Crash tool

Crash tool

34

▸ crash> mount

Prints mounted filesystems

Useful to get superblock pointers.

▸ crash> net

Prints network interfaces

Filesystems and Networks

Crash tool

Crash tool

35

▸ crash> kmem -i

Check general memory stats

▸ crash> kmem -s

Print “slabinfo”

The “kmem” command is used to inspect memory metadata information

about address pointers (more on a later slide). The ‘-i’ parameter makes

it to consolidate information about whole memory into general stats.

General memory stats

Crash tool

Crash tool

36

▸ crash> ps [-S] [-m] [-y XYZ]

Print process list

･ ‘-S’ prints number of processes per state

･ ‘-m’ prints time how long is the process in the current state

･ ‘-y’ prints only processes with the specified scheduling policy

Processes

Crash tool

Crash tool

37

▸ crash> files [PID | *task_struct]

Prints opened file descriptors

▸ crash> files [-d *dentry] [-p *inode]

･ ‘-d’ prints information about the file specified by *dentry

･ ‘-p’ prints information about the file specified by *inode

Opened file descriptors

Crash tool

Crash tool

38

▸ crash> vm [PID | *task_struct]

Prints virtual memory mappings, similar to /proc/PID/maps

Process’ virtual memory

Crash tool

Crash tool

39

▸ crash> eval [-b] <number>

Prints the given number of dec, oct, hex and binary.

･ ‘-b’ also prints which specific bits are set to ‘1’

▸ crash> p

Standard “print” command like bash “echo”. Useful for arithmetics.

Simple print tools

Crash tool

Crash tool

40
(*) Crash won’t verify if the data on the address are actually valid code…

▸ crash> dis <address | symbol>

Prints disassembly machine code.

When a function symbol is inputted, prints the whole function.

When address is inputted, interprets data on the address as code (*)

▸ crash> dis [-r] [-f] [-l]

･ ‘-r’ prints code from start of the function until the address

･ ‘-f’ prints code from address till end of function

･ ‘-l’ interleaves code with source code file+line references

Disassembly

Crash tool

Crash tool

41

▸ crash> sym <address | symbol>

Translates symbol to it’s virtual address or vice versa.

▸ crash> sym -l

Lists all symbols (‘kallsyms’) - useful for grepping.

▸ crash> whatis <symbol>

Prints function header info

Symbol information

Crash tool

Crash tool

42

▸ crash> struct <struct_name> <address>

Interprets data starting at address as <struct_name> data.

▸ crash> struct <struct_name>.<member>[,<member>]

Print only specified struct members

▸ crash> struct <struct_name> -o [<address>]

Print member offsets.

Struct contents

Crash tool

Crash tool

43

▸ crash> list [-H] <address>

crash> tree [-t <type>] [-N] <address>

Interprets the given address as list_head or tree node of the given

type and and prints the whole list or tree respectively.

･ ‘-H’/’-N’ specifies the “head” of the list or the tree root node.

▸ These can be used also in a more complex construct with

[-s struct [-l offset]] to print whole structs instead of just

list_head/tree_node pointers.

Lists and Trees

Crash tool

Crash tool

44

▸ crash> kmem -o

Print CPU percpu base addresses

▸ crash> p <percpu_symbol>

Print percpu addresses for given symbol

▸ crash> p <symbol>[:cpuspec]

crash> struct <struct_name> <symbol|address>[:cpuspec]

Print specific percpu struct contents (‘:a’ for “all”)

Inspecting per-cpu data

Crash tool

Crash tool

45

▸ crash> rd <address> <number>

Prints data on given address and ‘number’ of subsequent 64-bit

address pointers.

▸ crash> rd [-S[S]]

If the data contain known symbols, resp. slab objects, these options

print those information.

Also several other commands tend to have similar ‘-S[S]’ options.

Read raw data

Crash tool

Crash tool

46

▸ crash> vtop <address>

▸ crash> ptov <address>

Translate given address from virtual to physical or vice versa

▸ crash> kmem <address>

Learn information about the address.

Address information

Crash tool

Crash tool

47

▸ crash> search [-t] [-m 0xXYZ] <value>

Search for addresses which contain the <value> within the vmcore.

･ ‘-t’ searches only kernel stacks of tasks

･ ‘-m’ ignores specified bits in the <value>

Useful when looking for “which task was working with a given object”,

“what does this object belong to” or looking for a parent struct pointer.

Search

Crash tool

Practical examples

P
ractical exam

ples

48

Common procedures

Mindset

49

▸ Understanding state of system:

･ A round-trip personal routine of commands

▸ Checking something specific:

･ 1) Define what you want to learn

･ 2) Determine what data you need to inspect

･ 3) Use adequate commands to obtain the data

▸ Avoid “just looking around” if there’s *something*

How to think when analyzing a vmcore

Mindset

Practical examples

50

Crash provides a ‘foreach’ command via which you can execute given

command on specific group of processes. However sometimes it’s

beneficial to execute some command (ex. ‘struct’) on a set of addresses,

which unfortunately cannot be done via the ‘foreach’ command.

For that there’s a useful trick - parse out the set of addresses into a file

and the use the file as input for another command:

▸ crash> ‘command’ | awk ‘{parser}’ > my_parsed_data.txt

crash> ‘command2’ < my_parsed_data.txt

Working with sets of pointers

For each

Practical examples

51

The ‘ps -m’ nicely gives you times how long a task is in its current state.

This can be easily filtered based on task state:

▸ crash> ps -m | grep UN

You can then check what are the longest blocked tasks waiting for.

Checking “hung” system

Longest blocked tasks

Practical examples

52

The ‘ps’ command prints out all threads, hence when simply adding up

their RSS amounts, you may count thread-shared pages multiple times.

To avoid that, you may print only the thread group leader:

▸ crash> ps -G | … | sort -nrk X | …

Analyzing memory usage

Process RSS

Practical examples

53

Hard lockup is quite uncommon situation and may very well indicate

hardware malfunction. One of the first things you should check is whether

the hard lockup indeed is valid:

▸ Check the locked up CPU’s flags if interrupts are disabled:

･ crash> bt

…

RFLAGS: 00000246 <- 0x200 means “interrupts enabled”

…

Note if a CPU is stuck in IRQ context, it also can’t handle another interrupt.

Confirming hard lockup relevance

Interrupts enabled CPU flag

Practical examples

54

Spinlocks:

The kernel should not reschedule when holding a spinlock - the routine

needs to unlock it. So you should be able to find an active process on

some CPU executing in context where it holds the spinlock.

▸ crash> bt -a

▸ crash> search -t <spinlock_addr> (or addr of the parent struct)

Analyzing lockups/hung-ups

Checking lock owners

Practical examples

55

Mutexes, RT_Mutexes, RW_Semaphores:

These locks contain an “->owner” member, so you should be able to find

the task holding it quite easily (or at least the one which lastly locked it).

The “->owner” member can have certain flag bits on the lowest bits.

Note that rw_sem has read and write lock mode. Write lock has standard

single exclusive “->owner”, but read mode stores in “->owner” the last

task which acquired the read lock.

▸ Use “struct” command to get the “->owner” member

Analyzing lockups/hung-ups

Checking lock owners

Practical examples

56

To identify specific data a task was working with, you need to understand

how and where are data stored on stack and diligently follow the execution.

▸ 1) Identify the register where the data of interest were stored

Function arguments passed in order via:

RDI, RSI, RDX, RCX, R8, R9

Sometimes (or if there’s more than 6 arguments) the compiler

may optimize to save a reference on stack and load from there

You’d see that as offsetted loads from RBP or RSP

Function arguments or other pointers

Finding data on stack

Practical examples

57

▸ 2) Follow the machine code (backwards or forward) to find out where

 it got saved on stack.

A great help is to see if the data of interest gets stored in non-volatile

register. To maintain register non-volatility, the compiler commonly

saves contents of those registers on stack in the function prologue.

▸ DEMO

Function arguments or other pointers

Finding data on stack

Practical examples

58

Whenever you find yourself using some command construct more often

- save it under some alias in your “~/.crashrc”.

Whenever you spend time to craft a more complex command construct

to obtain some information that could be considered relatively general,

make sure to save your command construct.

Working efficiently

Tip - save your crafts

Assignment

A
ssignm

ent

59

How to write your analysis?

Assignment

60

You will receive a vmcore file and relevant vmlinux so you can start crash.

You have list of Requirements you should elaborate in your solution.

Your solution should list explicit full crash commands you used to obtain

data outputs, along with the outputs in unchanged form (you can trim).

Along with commands and data outputs you should elaborate what is

relevant in the specific data output you included in your solution.

It should always be clear where did you get data that you are working with.

Intro

Assignment

Assignment

61

<Commentary what I want to learn>

~~~

crash> <full command>

……    (opt. trim)

<output as you get it from crash>

…… (opt. trim)

~~~

<Commentary what’s relevant in the data above>

Data output form

Assignment

Assignment

62

You may freely merge several mental steps into single output - no need
to comment on every command you use.

The point it to create comprehensive “thought blocks” that have an idea
at the start and outcome/resolution at the end.

Imagine you are writing and analysis to a client/customer - how would
you write it in a professional manner, such that a technical person would
understand what you found and how.

Professionality

Assignment

linkedin.com/company/red-hat

youtube.com/user/RedHatVideos

facebook.com/redhatinc

twitter.com/RedHat

B
asic Intro to Linux Kernel

63

Red Hat is the world’s leading provider of enterprise

open source software solutions. Award-winning support,

training, and consulting services make Red Hat a trusted

adviser to the Fortune 500.

Thank you

